Advertisement

Formulation of Pioglitazone-Eudragit® RS100 Nanobeads and Nanofibers Using Electrospraying Technique

  • Khosro Adibkia
  • Mohammad Barzegar-JalaliEmail author
  • Niloofar Balaei
  • Karim Osouli-Bostanabad
  • Solmaz Ghajar
  • Shahram Emami
  • Solmaz Zakhireh
TECHNOLOGY

Abstract

In the present study, a novel polymeric nanoparticle-based drug delivery system was developed to enhance the dissolution rate of poorly water-soluble drug pioglitazone hydrochloride (PGH) using hydrophilic Eudragit® RS100 (Eudr) as a carrier. The new nanoformulations were prepared in different drug : polymer ratios (1 : 5 and 1 : 10) at total solution concentrations of (5–20% w/v) employing electrospraying as one-step, self-dispersing, and productive method. The physicochemical attributes of the electrosprayed samples (ESs) were evaluated conducting scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) as well as in vitro dissolution studies. FE-SEM results indicated that the size and morphology of the ESs were influenced by the drug: polymer ratios and solution concentrations, where a rise in the polymer ratio led to the particle size augmentation while the solution concentration enhancement yielded in the fiber establishment. The DSC and XRPD analysis revealed amorphization of the drug where, the FTIR evaluation verified absence of any chemical interactions between the drug-polymer within the electrospraying procedure. In vitro release studies of the ESs exhibited biphasic release pattern with higher release rates compared to the pure drug. Our finding demonstrated that the electrospraying as a cost-benefit technique could be effectively employed to improve the physicochemical features of PGH.

Notes

ACKNOWLEDGMENTS

This study was financially supported by the Vice Chancellor for Research of Tabriz University of Medical Sciences, Tabriz, Iran.

REFERENCES

  1. 1.
    S. Chhater and K. Praveen, Am. J. Biomed. Res. 1, 57 (2013).CrossRefGoogle Scholar
  2. 2.
    M.-A. Molaei, K. Osouli-Bostanabad, K. Adibkia, J. Shokri, S. Asnaashari, and Y. Javadzadeh, Acta Pharm. 68, 325 (2018).CrossRefGoogle Scholar
  3. 3.
    D.-G. Yu, G. R. Williams, X. Wang, J.-H. Yang, X.‑Y. Li, W. Qian, and Y. Li, J. Biomed. Sci. 4, 741 (2011).Google Scholar
  4. 4.
    X. Ma and R. O. Williams, J. Pharm. Invest. 48, 61 (2018).Google Scholar
  5. 5.
    M. Elmowafy, A. Samy, A. E. Abdelaziz, K. Shalaby, A. Salama, M. A. Raslan, and M. A. Abdelgawad, Beni-Suef Univ. J. Basic Appl. Sci. 6, 184 (2017).Google Scholar
  6. 6.
    M. Sharma, R. Sharma, and D. K. Jain, Scientifica 2016, 1 (2016).CrossRefGoogle Scholar
  7. 7.
    N. Jawahar and S. Meyyanathan, Int. J. Health Allied. Sci. 1, 217 (2012).CrossRefGoogle Scholar
  8. 8.
    S. A. Rizvi and A. M. Saleh, Saudi Pharm J. 26, 64 (2018).CrossRefGoogle Scholar
  9. 9.
    J. M. Chan, P. M. Valencia, L. Zhang, R. Langer, and O. C. Farokhzad, “Polymeric Nanoparticles for Drug Delivery,” in Cancer Nanotechnology. Methods and Protocols, Ed. by S. R. Grobmyer and B. M. Moudgil (Springer, New York; Dordrecht; Heidelberg; London, 2010) p. 163–175.Google Scholar
  10. 10.
    A. Kiriyama, K. Iga, and N. Shibata, Ther. Delivery 4, 1261 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Zaman, J. Nanomed. Nanotechnol. 7, 2 (2016).Google Scholar
  12. 12.
    M. Oliveira and A. Machado, “Preparation of Polymer-Based Nanocomposites by Different Routes,” in Nanocomposites: Synthesis, Characterization and Applications (Nova Sci. Publ., Hauppauge, 2013), Chap. 4, pp. 1–22.Google Scholar
  13. 13.
    C. Luo, T. Okubo, M. Nangrejo, and M. Edirisinghe, Polym. Int. 64, 183 (2015).CrossRefGoogle Scholar
  14. 14.
    B. Nagavarma, H. K. Yadav, A. Ayaz, L. Vasudha, and H. Shivakumar, Asian J. Pharm. Clin. Res. 5, 16 (2012).Google Scholar
  15. 15.
    C. Vauthier and K. Bouchemal, Pharm Res. 26, 1025 (2009).CrossRefGoogle Scholar
  16. 16.
    C. I. Crucho and M. T. Barros, Mater. Sci. Eng., C 80, 771 (2017).CrossRefGoogle Scholar
  17. 17.
    A. I. Suvorova, A. R. Sharafeeva, A. L. Suvorov, I. S. Tyukova, and B. I. Lirova, Polym. Sci., Ser. A 55, 438 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Madani, N. Sharifi-Sanjani, and R. Faridi-Majidi, Polym. Sci., Ser. A 53, 143 (2011).CrossRefGoogle Scholar
  19. 19.
    D. Abedinoghli, M. Charkhpour, K. Osouli-Bostanabad, S. Selselehjonban, S. Emami, M. Barzegar-Jalali, and K. Adibkia, Iran. J. Pharm. Res. 17, 1431 (2018).Google Scholar
  20. 20.
    D. N. Nguyen, C. Clasen, and G. Van den Mooter, J. Pharm. Sci. 105, 2601 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Jahangiri and K. Adibkia, BioImpacts 6, 1 (2016).CrossRefGoogle Scholar
  22. 22.
    N. Bock, M. A. Woodruff, D. W. Hutmacher, and T. R. Dargaville, Polymers 3, 131 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Jafari-Nodoushan, J. Barzin, and H. Mobedi, Polym. Adv. Technol. 26, 502 (2015).CrossRefGoogle Scholar
  24. 24.
    H. E. Gültekin and Z. Değim, FABAD J. Pharm. Sci. 38, 107 (2013).Google Scholar
  25. 25.
    U. Sharma, P. N. Badyal, and S. Gupta, Int. J. Pharmacol. 2, 60 (2015).Google Scholar
  26. 26.
    P. Vibhooti, G. Rajan, and B. Seema, Int. J. Pharm. Biol. Sci. 4, 399 (2013).Google Scholar
  27. 27.
    C. N. Patra, R. Priya, S. Swain, G. K. Jena, K. C. Panigrahi, and D. Ghose, Future J. Pharm. Sci. 3, 33 (2017).Google Scholar
  28. 28.
    D. Pabla, F. Akhlaghi, and H. Zia, Eur. J. Pharm. Biopharm. 72, 105 (2009).CrossRefGoogle Scholar
  29. 29.
    A.-R. Faramarzi, J. Barzin, and H. Mobedi, Fibers Polym. 17, 1806 (2016).CrossRefGoogle Scholar
  30. 30.
    E. Jain, K. M. Scott, S. P. Zustiak, and S. A. Sell, Macromol. Mater. Eng. 300, 823 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Jahangiri, S. Davaran, B. Fayyazi, A. Tanhaei, S. Payab, and K. Adibkia, Colloids Surf., B 123, 219 (2014).CrossRefGoogle Scholar
  32. 32.
    A. Jabur, L. Abbas, and S. Muhi, Eng. Technol. J. 4, 340 (2017).Google Scholar
  33. 33.
    Z. Esmaili, S. Bayrami, F. A. Dorkoosh, H. Akbari Javar, E. Seyedjafari, S. S. Zargarian, and V. Haddadi-Asl, J. Biomed. Mater. Res., Part A 106, 285 (2018).Google Scholar
  34. 34.
    I. Biswal, A. Dinda, S. Mohanty, M. Dhara, D. Das, and K. Chowdary, Asian J. Chem. 23, 1973 (2011).Google Scholar
  35. 35.
    B. Tarus, N. Fadel, A. Al-Oufy, and M. El-Messiry, Alexandria Eng. J. 55, 2975 (2016).Google Scholar
  36. 36.
    S. Payab, S. Davaran, A. Tanhaei, B. Fayyazi, A. Jahangiri, A. Farzaneh, and K. Adibkia, Artif Cells, Nanomed., Biotechnol. 44, 362 (2016).CrossRefGoogle Scholar
  37. 37.
    A. Garjani, M. Barzegar-Jalali, K. Osouli-Bostanabad, H. Ranjbar, and K. Adibkia, Artif Cells, Nanomed., Biotechnol. 46, 749 (2018).CrossRefGoogle Scholar
  38. 38.
    A. Mehregan Nikoo, R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker, J. Microencapsulation 33, 605 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Jelvehgari, J. Barar, H. Valizadeh, S. Shadrou, and A. Nokhodchi, Pharm. Dev. Technol. 16, 637 (2011).CrossRefGoogle Scholar
  40. 40.
    B. B. Horoz, M. Kiliçarslan, N. Yüksel, and T. Baykara, AAPS PharmSciTech 7, E111 (2006).CrossRefGoogle Scholar
  41. 41.
    N. Ogawa, T. Hiramatsu, R. Suzuki, R. Okamoto, K. Shibagaki, K. Fujita, Ch. Takahash, Y. Kawashima, and H.Yamamoto, Eur. J. Pharm. Sci. 111, 205 (2018).CrossRefGoogle Scholar
  42. 42.
    N.-Q. Shi, Y.-S. Lei, L.-M. Song, J. Yao, X.-B. Zhang, and X.-L. Wang, Powder Technol. 24, 211 (2013).CrossRefGoogle Scholar
  43. 43.
    N. Jahnavi, A. Dixit, A. Mehta, and M. M. Varma, Indian J. Pharm. Educ. Res. 47, 113 (2013).Google Scholar
  44. 44.
    V. Pandit, R. S. Pai, K. Devi, and S. Suresh, J. Adv. Pharm. Technol. Res. 3, 160 (2012).CrossRefGoogle Scholar
  45. 45.
    R. Pignatello, M. Ferro, and G. Puglisi, AAPS PharmSciTech 3, 35 (2002).CrossRefGoogle Scholar
  46. 46.
    V. Vyas, P. Sancheti, P. Karekar, M. Shah, and Y. Pore, Acta Pharm. 59, 453 (2009).CrossRefGoogle Scholar
  47. 47.
    S. R. Mishra, P. Ellaiah, P. K. Jena, B. S. Nayak, and G. Mishra, Int. J. Pharm. Sci. Res. 2, 2681 (2011).Google Scholar
  48. 48.
    N. Jafari-Aghdam, K. Adibkia, S. Payab, M. Barzegar-Jalali, A. Parvizpur, G. Mohammadi, and A. Sabzevari, Artif Cells, Nanomed., Biotechnol. 44, 497 (2016). CrossRefGoogle Scholar
  49. 49.
    J. E. Polli, G. Singh Rekhi, L. L. Augsburger, and V. P. Shah, J. Pharm. Sci. 86, 690 (1997).CrossRefGoogle Scholar
  50. 50.
    B. Magenheim, M. Levy, and S. Benita, Int. J. Pharm. 94, 115 (1993).CrossRefGoogle Scholar
  51. 51.
    V. Krishnamoorthy and V. P. R. Prasad, Braz. J. Pharm. Sci. 48, 243 (2012).CrossRefGoogle Scholar
  52. 52.
    Y. Shahzad, S. N. H. Shah, M. T. Ansari, R. Riaz, A. Safdar, T. Hussain, and M. Malik, Chin. Sci. Bull. 57, 1685 (2012).CrossRefGoogle Scholar
  53. 53.
    R. Singh and J. W. Lillard, Jr., Exp. Mol. Pathol. 86, 215 (2009).CrossRefGoogle Scholar
  54. 54.
    Y. Wang and L. Xu, Polymers 10, 144 (2018).CrossRefGoogle Scholar
  55. 55.
    R. Ramanujam, S. Balraj, J. Ganesh, and J. Milton, Int. J. Sci. Res. Sci. Technol. 3, 5 (2017).Google Scholar
  56. 56.
    S. Zhang, K. Kawakami, M. Yamamoto, Y. Masaoka, M. Kataoka, S. Yamashita, and S. Sakuma, Mol. Pharmaceutics 8, 807 (2011).CrossRefGoogle Scholar
  57. 57.
    E. Sayed, C. Karavasili, K. Ruparelia, R. Haj-Ahmad, G. Charalambopoulou, T. Steriotis, D. Giasafaki, P. Cox, N. Singh, L.-P. N. Giassafaki, A. Mpenekou, C. K. Markopoulou, I. S. Vizirianakis, M.-W. Chang, D. G. Fatouros, and Z. Ahmad, J. Controlled Release 278, 142 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Khosro Adibkia
    • 1
    • 2
  • Mohammad Barzegar-Jalali
    • 2
    • 3
    • 4
    Email author
  • Niloofar Balaei
    • 2
    • 3
    • 5
  • Karim Osouli-Bostanabad
    • 1
    • 2
    • 5
  • Solmaz Ghajar
    • 2
    • 3
    • 5
  • Shahram Emami
    • 2
  • Solmaz Zakhireh
    • 3
  1. 1.Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical SciencesTabrizIran
  2. 2.Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical SciencesTabrizIran
  3. 3.Drug Applied Research Center, Tabriz University of Medical SciencesTabrizIran
  4. 4.Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical SciencesTabrizIran
  5. 5.Students Research Committee, Tabriz University of Medical SciencesTabrizIran

Personalised recommendations