Skip to main content
Log in

Structural and Electronic Properties of PPy-DBSA/Zirconium Oxide Composites

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The composites of doped polypyrrole (PPy) with dodecylbenzenesulfonic acid (DBSA) and zirconium oxide (ZrO2) nanoparticles have been prepared by in-situ polymerization method. The structural properties of synthesized polypyrrole and PPy-DBSA-ZrO2 were studied by X-ray diffraction (XRD) analysis. XRD pattern show that PPy-DBSA is intercalated into the layers of ZrO2 successfully and thus the degree of crystallinity increases due to crystalline nature of ZrO2. FTIR analysis indicated that there is a strong interaction between PPy-DBSA and ZrO2 nanoparticles. Electronic properties (dielectric and conductivity) of PPy and PPy-DBSA-ZrO2 composite have been investigated between frequency ranges from 20 Hz to 1M Hz. Higher dielectric constants and dielectric losses of PPy-DBSA-ZrO2 composites than those of synthesized PPy and PPy-DBSA were found. As the content of ZrO2 increased, the dielectric constant and loss also increased. The value of dielectric constant for all samples is very high at low frequency but decreases with increase in frequency. Synthesis of PPy-DBSA-ZrO2 composite materials with a large dielectric constant is essential for the improvement of a novel generation dynamic RAM and in charge storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. J. Bae, K. H. Kim, and W. H. Jo, Macromolecules 37, 9850 (2004).

    Article  CAS  Google Scholar 

  2. W. M. A. T. Bandara, D. M. M. Krishantha, J. S. H. Q. Perera, R. M. G. Rajapakse, and D. T. B. Tennakoon, J. Compos. Mater. 39, 759 (2005).

    Article  CAS  Google Scholar 

  3. P. Aranda, M. Darder, R. Fernández-Saavedra, M. López-Blanco, and E. Ruiz-Hitzky, Thin Solid Films 495, 104 (2006).

    Article  CAS  Google Scholar 

  4. J. H. Sung and H. J. Choi, J. Macromol. Sci., Part B: Phys. 44, 365 (2005).

    Article  CAS  Google Scholar 

  5. A. Dey, S. De, A. De, and S. K. De, Nanotechnology 15, 1277 (2004).

    Article  CAS  Google Scholar 

  6. C. Huang and Q. M. Zhang, Adv. Mater. 17, 1153 (2005).

    Article  CAS  Google Scholar 

  7. H. S. Nalwa, Handbook of Low and High Dielectric Constant Materials and Their Applications Academic (Academic Press, San Diego, 1999).

    Google Scholar 

  8. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality Potential and Challenges, Ed. by B. C. Yoseph (SPIE Press, Bellingham, WA, 2004).

    Google Scholar 

  9. H. Banno and K. Ogura, Ferroelectrics 95, 111 (1989).

    Article  CAS  Google Scholar 

  10. Y. Song, T. W. Noh, S. I. Lee, and J. R. Gaines, Phys. Rev. B: Condens. Matter Mater. Phys. 33, 904 (1986).

    Article  CAS  Google Scholar 

  11. J. W. Hu, M. W. Li, M. Q. Zhang, D. S. Xiao, G. S. Cheng, and M. Z. Rong, Macromol. Rapid Commun. 24, 889 (2003).

    Article  CAS  Google Scholar 

  12. Z. M. Dang, Y. H. Zhang, and S. C. Tjong, Synth. Met. 146, 79 (2004).

    Article  CAS  Google Scholar 

  13. Z. M. Dang, Y. H. Lin, and C. W. Nan, Adv. Mater. 15, 1625 (2003).

    Article  CAS  Google Scholar 

  14. Z. M. Dang, L. Wang, H. Y. Wang, C. W. Nan, D. Xie, Y. Yin, and S. C. Tjong, Appl. Phys. Lett. 86, 172905 (2005).

    Article  CAS  Google Scholar 

  15. C. Huang, J. Su, and Q. M. Zhang, Mater. Res. Soc. Symp. Proc. 785, 73 (2004).

    Article  CAS  Google Scholar 

  16. C. Huang, Q. M. Zhang, and J. Su, Appl. Phys. Lett. 82, 3504 (2003).

    Google Scholar 

  17. C. P. Chwang, C. D. Liu, S. W. Huang, D. Y. Chao, and S. N. Lee, Synth. Met. 142, 275 (2004).

    Article  CAS  Google Scholar 

  18. C. Pecharroman and J. S. Moya, Adv. Mater. 12, 294 (2000).

    Article  CAS  Google Scholar 

  19. S. Manjunath, K. R. Anilkumar, M. Revanasiddappa, and M. V. N. Ambika Prasad, Ferroelectr. Lett. 35, 36 (2008).

    Article  CAS  Google Scholar 

  20. S. Manjunath, K. R. Anilkumar, and M. V. N. Ambika Prasad, Ferroelectrics 366, 22 (2008).

    Article  CAS  Google Scholar 

  21. S. D. Patil, S. C. Raghavendra, M. Revansiddappa, P. Narsimha, and M. V. N. Ambika Prasad, Bull. Mater. Sci. 30, 89 (2007).

    Article  CAS  Google Scholar 

  22. J. Alam, U. Riaz, and S. Ahmad, J. Magn. Magn. Mater. 314, 93 (2007).

    Article  CAS  Google Scholar 

  23. T. K. Vishnuvardhan, V. R. Kulkarni, C. Basavaraja, and S. C. Raghavendra, Bull. Mater. Sci. 29, 77 (2006).

    Article  CAS  Google Scholar 

  24. Y. K. Gun ko, S. C. Pillai, and D. McInerney, J. Mater. Sci. 12, 299 (2001).

  25. S. H. Mohamed, M. E. Hagary, and M. E. Ismail, J. Phys. D: Appl. Phys. 43, 075401 (2010).

    Article  CAS  Google Scholar 

  26. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  27. S. Saravanan, C. J. Mathai, A. R. Anantharaman, S. Venkatachalam, and P. V. Prabhakaran, J. Phys. Chem. Solids 67, 1496 (2006).

    Article  CAS  Google Scholar 

  28. W. L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1914).

    Google Scholar 

  29. A. Shakoor, PhD Thesis (Quaid-I-Azam Univ., Islamabad, Pakistan, 2009).

  30. S. Saravanan, C. J. Mathai, A. R. Anantharaman, S. Venkatachalam, and P. V. Prabhakaran, J. Phys. Chem. Solids 67, 1496 (2006).

    Article  CAS  Google Scholar 

  31. B. R. Manjunath, A. Venkataraman, and T. Stephen, J. Appl. Polym. Sci. 17, 1091 (1991.)

  32. N. Arsalani and K. E. Geckeler, React. Funct. Polym. 33, 167 (1997).

    Article  CAS  Google Scholar 

  33. K. S. Jang, H. Lee, B. Moon, and C. Y. Kim, Synth. Met. 143, 289 (2004).

    Article  CAS  Google Scholar 

  34. S. Lamprakopoulos, D. Yfantis, A. Yfantis, and D. Schmeisser, Synth. Met. 144, 229 (2004).

    Article  CAS  Google Scholar 

  35. A. K. Jonscher, Nature (London) 267, 673 (1977).

    Article  CAS  Google Scholar 

  36. A. K. Jonscher, J. Phys. D: Appl. Phys. 32, 57 (1999).

    Article  Google Scholar 

  37. S. R. Elliot, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  38. A. N. Papathanassiou, I. Sakellis, and J. Grammatikakis, Appl. Phys. Lett. 91, 122911 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Irfan or Abdul Shakoor.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad Irfan, Shakoor, A., Majid, A. et al. Structural and Electronic Properties of PPy-DBSA/Zirconium Oxide Composites. Polym. Sci. Ser. A 61, 105–111 (2019). https://doi.org/10.1134/S0965545X19010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19010048

Navigation