Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 902–910 | Cite as

Aggregation in Biocompatible Linear Block Copolymers: Computer Simulation Study

  • D. S. DolgovEmail author
  • T. E. Grigor’ev
  • A. I. Kulebyakina
  • E. V. Razuvaeva
  • R. A. Gumerov
  • S. N. Chvalun
  • I. I. Potemkin
Theory and Simulation
  • 4 Downloads

Abstract

The self-organization of molecules of linear diblock copolymer poly(ethylene oxide)–polylactide and triblock copolymer polylactide–poly(ethylene oxide)–polylactide in aqueous solution is studied by the dissipative particle dynamics method, and quantitative comparison with the experimental data is performed. It is shown that the diblock copolymers are aggregated to spherical micelles, their average aggregation number increases with increasing both polymer concentration and hydrophobic block length. For the given type of molecules, the simulation results agree well with the experiment. For the case of triblock copolymers it is predicted that stable supramolecular aggregates of various morphologies exist in solution even at low concentrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Karayianni and S. Pispas, in Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence (Methods and Applications), Ed. by M. Karayianni, S. Pispas, and K. Prochazka (Springer, Cham, 2016).Google Scholar
  2. 2.
    D. E. Discher, V. Ortiz, G. Srinivas, M. L. Klein, Y. Kim, D. Christian, S. Cai, P. Photos, and F. Ahmed, Prog. Polym. Sci. 32, 838 (2007).CrossRefGoogle Scholar
  3. 3.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science 263, 1600 (1994).CrossRefGoogle Scholar
  4. 4.
    S. A. Hagan, A. G. A. Coombes, M. C. Garnett, S. E. Dunn, M. C. Davies, L. Illum, S. S. Davis, S. E. Harding, S. Purkiss, and P. R. Gellert, Langmuir 12, 2153 (1996).CrossRefGoogle Scholar
  5. 5.
    K. Yasugi, Y. Nagasaki, M. Kato, and K. Kataoka, J. Controlled Release 62, 89 (1999).CrossRefGoogle Scholar
  6. 6.
    T. Riley, S. Stolnik, C. R. Heald, C. D. Xiong, M. C. Garnett, L. Illum, and S. S. Davis, Langmuir 17, 3168 (2001).CrossRefGoogle Scholar
  7. 7.
    T. Riley, C. R. Heald, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis, Langmuir 19, 8428 (2003).CrossRefGoogle Scholar
  8. 8.
    F. Ahmed and D. E. Discher, J. Controlled Release 96, 37 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Kim, P. Dalhaimer, D. A. Christian, and D. E. Discher, Nanotecnology 16, 484 (2005).CrossRefGoogle Scholar
  10. 10.
    Zh. Zhu, Biomaterials 34, 10238 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Fujiwara, M. Miyamoto, Y. Kimura, T. Iwata, and Y. Doi, Macromolecules 34, 4043 (2001).CrossRefGoogle Scholar
  12. 12.
    N. Sanabria-Delong, S. K. Agrawal, S. R. Bhatia, and G. N. Tew, Macromolecules 40, 7864 (2007).CrossRefGoogle Scholar
  13. 13.
    S. K. Agrawal, N. Sanabria-Delong, P. R. Jemian, G.N. Tew, and S. R. Bhatia, Langmuir 23, 5039 (2007).CrossRefGoogle Scholar
  14. 14.
    N. Sanabria-Delong, A. J. Crosby, and G. N. Tew, Biomacromolecules 9, 2784 (2008).CrossRefGoogle Scholar
  15. 15.
    K. Nagahama, K. Fujiura, S. Enami, T. Ouchi, and Y. Ohya, J. Polym. Sci., Part A: Polym. Chem. 46, 6317 (2008).CrossRefGoogle Scholar
  16. 16.
    P. Jie, S. S. Venkatraman, F. Min, B. Y. C. Freddy, and G. L. Huat, J. Controlled Release 110, 20 (2005).CrossRefGoogle Scholar
  17. 17.
    I. Orienti, G. Zuccari, M. Falconi, G. Teti, N. A. Illingworth, and G. J. Veal, Nanomedicine (N. Y., NY, U. S.) 8, 880 (2012).Google Scholar
  18. 18.
    S. Pispas, N. Hadjichristidis, I. Potemkin, and A. Khokhlov, Macromolecules 33, 1741 (2000).CrossRefGoogle Scholar
  19. 19.
    R. A. Gumerov, A. A. Rudov, W. Richtering, M. Möller, and I. I. Potemkin, ACS Appl. Mater. Interfaces 9, 31302 (2017).CrossRefGoogle Scholar
  20. 20.
    K. E. Polovnikov and I. I. Potemkin, J. Phys. Chem. B 121, 10180 (2017).CrossRefGoogle Scholar
  21. 21.
    X. D. Guo, J. P. K. Tan, S. H. Ki, Li. J. Zhang, Y. Zhang, J. L. Hedrick, Y. Y. Yang, and Y. Qian, Biomaterials 30, 6556 (2009).CrossRefGoogle Scholar
  22. 22.
    P. Posocco, M. Fermeglia, and S. Pricl, J. Mater. Chem. 20, 7742 (2010).CrossRefGoogle Scholar
  23. 23.
    Y.-L. Lin, M.-Z. Wu, Y.-J. Sheng, and H.-K. Tsao, J. Chem. Phys. 136, 104905 (2012).CrossRefGoogle Scholar
  24. 24.
    P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).CrossRefGoogle Scholar
  25. 25.
    P. Espanol and P. Warren, Europhys. Lett. 30, 191 (1995).CrossRefGoogle Scholar
  26. 26.
    R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefGoogle Scholar
  27. 27.
    Zh. Li and E. E. Dormidontova, Macromolecules 43, 3521 (2010).CrossRefGoogle Scholar
  28. 28.
    A. A. Rudov, E. S. Patyukova, I. V. Neratova, P. G. Khalatur, D. Posselt, C. M. Papadakis, and I. I. Potemkin, Macromolecules 46, 5786 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Stenbock-Fermor, A. A. Rudov, R. A. Gumerov, L. A. Tsarkova, A. Böker, M. Möller, and I. I. Potemkin, ACS Macro Lett. 3, 803 (2014).CrossRefGoogle Scholar
  30. 30.
    Y. Wang, Q. Y. Li, X. B. Liu, C. Y. Zhang, Zh. M. Wu, and X. D. Guo, ACS Appl. Mater. Interfaces 7, 25592 (2015).CrossRefGoogle Scholar
  31. 31.
    A. A. Rudov, P. G. Khalatur, and I. I. Potemkin, Macromolecules 45, 4870 (2012).CrossRefGoogle Scholar
  32. 32.
    F. Müller-Plathe, ChemPhysChem 3, 754 (2002).CrossRefGoogle Scholar
  33. 33.
    V. S. Kravchenko and I. I. Potemkin, J. Phys. Chem. B 120, 122211 (2016).CrossRefGoogle Scholar
  34. 34.
    V. V. Palyulin and I. I. Potemkin, Macromolecules 41, 4459 (2008).CrossRefGoogle Scholar
  35. 35.
    T. M. Birshtein and E. B. Zhulina, Polymer 30, 170 (1989).CrossRefGoogle Scholar
  36. 36.
    S. V. Venev, P. Reineker, and I. I. Potemkin, Macromolecules 43, 10735 (2010).CrossRefGoogle Scholar
  37. 37.
    A. Markina, V. Ivanov, P. Komarov, A. Khokhlov, and S.-H. Tung, Chem. Phys. Lett. 664, 16 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Dolgov
    • 1
    Email author
  • T. E. Grigor’ev
    • 1
  • A. I. Kulebyakina
    • 1
  • E. V. Razuvaeva
    • 1
  • R. A. Gumerov
    • 2
  • S. N. Chvalun
    • 1
  • I. I. Potemkin
    • 2
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations