Polymer Science, Series A

, Volume 60, Issue 6, pp 777–787 | Cite as

Investigating the Physical Properties of Poly(L-lactic acid) Modified Using an Aromatics Succinic Dihydrazide Derivative

  • Li-Sha Zhao
  • Yan-Hua CaiEmail author
Natural Polymers


In order to overcome the defect of slow crystallization rate of Poly(L-lactic acid) (PLLA) during manufacturing, a new organic nucleating agent, N,N'-succinic bis(hydrocinnamic acid) dihydrazide (BHSH), was synthesized to evaluate its influence on the crystallization and other physical properties of PLLA in this work. For this purpose, the non-isothermal crystallization, isothermal crystallization of PLLA modified using BHSH were investigated using differential scanning calorimetry and depolarized-light intensity measurement. Additionally, the melting behavior, thermal stability, and optical property of BHSHnucleated PLLA were further studied. The result of the non-isothermal crystallization behavior indicated that BHSH had a distinct accelerating effect for the melt crystallization process of PLLA and the non-isothermal crystallization peak shifted to the higher temperature and became sharper. Meantime, non-isothermal crystallization result further revealed that both the cooling rate and the final set melting temperature affected the non-isothermal crystallization behavior of PLLA. The addition of BHSH could cause the crystallization halftime of PLLA to become shorter, meaning that PLLA/BHSH samples had a faster overall crystallization rate comparing with the pure PLLA. Upon the addition of 2 wt% BHSH, the crystallization half-time of PLLA/BHSH decreased from 575.7 s to the minimum value 48.6 s at 100°C. Melting behavior after crystallization further confirmed the crystallization promoting effect of BHSH for PLLA, and the double-melting peaks were attributed to the melting-recrystallization. Although that the BHSH could improve the crystallization of PLLA, unfortunately, the presence of BHSH decreased the thermal stability and light transmittance of PLLA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. H. Cai, Y. H. Zhang, and L. P. Ren, J. Macromol. Sci., Part B: Phys. 55,547 (2016).Google Scholar
  2. 2.
    Z. Y. Yu, J. B. Yin, S. F. Yan, Y. T. Xie, J. Ma, and X. S. Chen, Polymer 48, 6439 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. Li, S. Y. Xin, Y. J. Bian, K. Xu, C. Y. Han, and L. S. Dong, Int. J. Biol. Macromol. 85, 63 (2016).CrossRefGoogle Scholar
  4. 4.
    Z. Z. Guo, S. Wu, H. Li, Q. Y. Li, G. Wu, and C. R. Zhou, Dent. Mater. J. 37, 317 (2018).CrossRefGoogle Scholar
  5. 5.
    S. I. Goreninskil, K. S. Stankevich, E. N. Bolbasov, N. V. Danilenko, V. D. Fillimonov, and S. I. Tverdokhlebov, Bionanoscience 8, 67 (2018).CrossRefGoogle Scholar
  6. 6.
    L. Genovese, M. Soccio, N. Lotti, M. Gazzano, V. Siracusa, E. Salatelli, F. Balestra, and A. Munari, Eur. Polym. J. 95, 289 (2017).CrossRefGoogle Scholar
  7. 7.
    H. L. Wang, H. Liu, C. J. Chu, Y. She, S. W. Jiang, L. F. Zhai, S. T. Jiang, and X. J. Li, Food Bioprocess Technol. 8, 1657 (2015).CrossRefGoogle Scholar
  8. 8.
    W. Y. Xu, A. Pranovich, P. Uppstu, X. J. Wang, D. Kronlund, J. Hemming, H. Oblom, N. Moritz, M. Preis, N. Sandier, S. Willfor, and C. L. Xu, Carbohydr. Polym. 187, 51 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Diamantopoulos, I. Kantemiris, G. Patatoukas, M. Dilvol, E. Efstathopoulos, V. Kouloulias, and K. Platonl, Med. Phys. 45, 1708 (2018).CrossRefGoogle Scholar
  10. 10.
    J. R. Rocca-Smith, O. Whyte, C. H. Brachais, D. Champion, F. Plasente, E. Marcuzzo, A. Sensidoni, F. Debeaufort, and T. Karbowiak, ACS Sustainable Chem. Eng. 5, 2751 (2017).CrossRefGoogle Scholar
  11. 11.
    D. Merino, Y. Mansila, C. Casalongue, and V. Alvarez, Av. Cienc. Ing. 7, 27 (2016).Google Scholar
  12. 12.
    R. Machado, A. da Costa, D. M. Silva, A. C. Gomes, M. Casal, and V. Sencadas, Macromol. Biosci. 18, 1700324 (2018).CrossRefGoogle Scholar
  13. 13.
    Z. Bartczak, A. Galeski, M. Kowalczuk, M. Sobota, and P. Malinowski, Eur. Polym. J. 49, 3630 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. H. Cai, S. F. Yan, Y. Q. Fan, Z. Y. Yu, X. S. Chen, and J. B. Yin, Iran. Polym. J. 21, 435 (2012).CrossRefGoogle Scholar
  15. 15.
    T. Wu, Y. R. Tong, F. Qiu, D. Yuan, G. Z. Zhang, and J. P. Qu, Polym. Adv. Technol. 29, 41 (2018).CrossRefGoogle Scholar
  16. 16.
    J. Wu, X. X. Zou, B. Jing, and W. L. Dai, Polym. Eng. Sci. 55, 1104 (2015).CrossRefGoogle Scholar
  17. 17.
    T. F. Cipriano, A. L. N. da Silva, A. H. M. D. F. T. da Silva, A. M. F. de Sousa, G. M. da Silva, and M. G. Rocha, Polim.: Cienc. Tecnol. 24, 276 (2014).CrossRefGoogle Scholar
  18. 18.
    R. H. Hakim, J. Cailloux, O. O. Santana, J. Bou, M. Sanchez-Soto, J. Odent, J. M. Raquez, P. Dubois, F. Carrasco, and M. L. Maspoch, J. Appl. Polym. Sci. 134, 45367 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. H. Li, C. H. Chen, J. Li, and X. Z. S. Sun, J. Appl. Polym. Sci. 124, 2968 (2012).CrossRefGoogle Scholar
  20. 20.
    S. Y. Kim, K. S. Shin, S. H. Lee, K. W. Kim, and J. R. Youn, Fibers Polym. 11, 1018 (2010).CrossRefGoogle Scholar
  21. 21.
    X. M. Wu, X. Y. Chen, and Z. Y. Fan, Polym. Adv. Technol. 29, 632 (2018).CrossRefGoogle Scholar
  22. 22.
    Z. Z. Su, K. Huang, and M. S. Lin, J. Macromol. Sci., Part B: Phys. 51, 1475 (2012).CrossRefGoogle Scholar
  23. 23.
    L. Chen, X. J. Pang, G. S. Yu, J. Cui, J. M. Cheng, and J. Qi, Compos. Sci. Technol. 74, 160 (2013).CrossRefGoogle Scholar
  24. 24.
    L. L. Han, P. J. Pan, G. R. Shan, and Y. Z. Bao, Polymer 63, 144 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Zhao, B. Liu, C. You, and M. F. Chen, Mater. Des. 89, 573 (2016).CrossRefGoogle Scholar
  26. 26.
    X. H. Gong, L. Pan, C. Y. Tang, L. Chen, C. Q. Li, C.G. Wu, W. C. Law, X. T. Wang, C. P. Tsui, and X. L. Xie, Composites, Part B 91, 103 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Naffakh, C. Marco, and G. Ellis, CrystEngComm 16, 5062 (2014).CrossRefGoogle Scholar
  28. 28.
    Y. Y. Liang, J. Z. Xu, X. Y. Liu, G. J. Zhong, and Z. M. Li, Polymer 54, 6479 (2013).CrossRefGoogle Scholar
  29. 29.
    L. Zheng and W. J. Zhen, Iran. Polym. J. 27, 239 (2018).CrossRefGoogle Scholar
  30. 30.
    P. Song, L. Sang, L. C. Zheng, C. Wang, K. K. Liu, and Z. Y. Wei, RSC Adv. 7, 27150 (2017).CrossRefGoogle Scholar
  31. 31.
    A. M. Harris and E. C. Lee, J. Appl. Polym. Sci. 107, 2246 (2008).CrossRefGoogle Scholar
  32. 32.
    Z. B. Tang, C. Z. Zhang, X. Q. Liu, and J. Zhu, J. Appl. Polym. Sci. 125, 1108 (2012).CrossRefGoogle Scholar
  33. 33.
    T. F. Shen, Y. S. Xu, X. X. Cai, P. M. Ma, W. F. Dong, and M. Q. Chen, RSC Adv. 6, 48365 (2016).CrossRefGoogle Scholar
  34. 34.
    P. M. Ma, Y. S. Xu, D. W. Wang, W. F. Dong, and M. Q. Chen, Ind. Eng. Chem. Res. 53, 12888 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. T. Xu and L. B. Wu, Eur. Polym. J. 49, 865 (2013).CrossRefGoogle Scholar
  36. 36.
    Y. H. Cai, S. F. Yan, J. B. Yin, Y. Q. Fan, and X. S. Chen, J. Appl. Polym. Sci. 121(3), 1408 (2011).Google Scholar
  37. 37.
    H. Bai, C. Huang, H. Xiu, Q. Zhang, and Q. Fu, Polymer 55, 6924 (2014).CrossRefGoogle Scholar
  38. 38.
    Y. H. Cai, Y. Tang, and L. S. Zhao, J. Appl. Polym. Sci. 132, 42402 (2015).CrossRefGoogle Scholar
  39. 39.
    Y. H. Cai, L. S. Zhao, and Y. H. Zhang, J. Polym. Res. 22, 246 (2015).CrossRefGoogle Scholar
  40. 40.
    J. Li, D. K. Chen, B. Z. Gui, M. H. Gu, and J. Ren, Polym. Bull. 67, 775 (2011).CrossRefGoogle Scholar
  41. 41.
    D. R. He, Y. M. Wang, C. G. Shao, G. Q. Zheng, Q. Li, and C. Y. Shen, Polym. Test. 32, 1088 (2013).CrossRefGoogle Scholar
  42. 42.
    Y. Q. Shi, L. Wen, and Z. Xing, Polym. Polym. Compos. 26, 169 (2018).Google Scholar
  43. 43.
    T. Wang, Y. Yang, C. Zhang, Z. Tang, H. Na, and J. Zhu, J. Appl. Polym. Sci. 130, 1328 (2013).CrossRefGoogle Scholar
  44. 44.
    T. F. Shen, P. M. Ma, Q. Q. Yu, W. F. Dong, and M. Q. Chen, Polymers 8, 431 (2016).CrossRefGoogle Scholar
  45. 45.
    L. L. Tian and Y. H. Cai, Mater. Res. Express 5, 045311 (2018).CrossRefGoogle Scholar
  46. 46.
    Y. H. Cai and L. S. Zhao, e-Polym. 16, 303 (2016).Google Scholar
  47. 47.
    Z. Z. Su, W. H. Guo, Y. J. Liu, Q. Y. Li, and C. F. Wu, Polym. Bull. 62, 629 (2009).CrossRefGoogle Scholar
  48. 48.
    Z. Z. Su, Q. Y. Li, Y. J. Liu, W. H. Guo, and C. F. Wu, Polym. Eng. Sci. 50, 1658 (2010).CrossRefGoogle Scholar
  49. 49.
    L. L. Tian and Y. H. Cai, Mater. Sci. 24, 81 (2018).Google Scholar
  50. 50.
    M. Yasuniwa and T. Satou, J. Polym. Sci., Part B: Polym. Phys. 40, 2411 (2002).CrossRefGoogle Scholar
  51. 51.
    M. A. Elsawy, G. R. Saad, and A. M. Sayed, Polym. Eng. Sci. 56, 987 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Environmental Materials and Remediation TechnologiesChongqing University of Arts and SciencesChongqingChina

Personalised recommendations