Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 854–865 | Cite as

Graphene Nanosheets Reinforced Epoxy Nanocomposites: Mechanical and Electrical Properties Evaluation

  • F. Vahedi
  • M. Eskandarzade
  • K. Osouli-BostanabadEmail author
  • A. Tutunchi
Composites
  • 2 Downloads

Abstract

Utilizing the direct mixing and conducting ultra-sonication with two solvent free and solventborne methods, Graphene nanosheets (GNSs)/Epoxy nanocomposites were fabricated through the present research. Mechanical and electrical properties of nanocomposites with various contents of GNSs were investigated. Mechanical properties such as tensile and flexural modulus, tensile and flexural strength were taken into account and the electrical conductivity was monitored throughout the tests. A considerable improvement in tensile modulus (12%) of the nanocomposites was observed using 0.5 wt % of GNSs and flexural modulus was enhanced by 10% in the presence of GNSs with the same filler contents. Moreover, flexural strength and tensile strength of the nanocomposites were improved by 5 and 15% at 0.1 wt %, respectively. In addition, the results revealed that the non-solvent method had a better effect on improving the mechanical properties rather than the solvent-borne method. Furthermore, the electrical conductivity was enhanced by increasing in GNSs contents, while the percolation threshold was at 1 wt %.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56(1991).Google Scholar
  2. 2.
    T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci. 35, 1350 (2010).CrossRefGoogle Scholar
  3. 3.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Osouli-Bostanabad, E. Hosseinzade, A. Kianvash, and A. Entezami, Appl. Surf. Sci. 356, 1086 (2015).CrossRefGoogle Scholar
  5. 5.
    K. Osouli-Bostanabad, H. Aghajani, E. Hosseinzade, H. Maleki-Ghaleh, and M. Shakeri, Mater. Manuf. Processes 31, 1351 (2016).CrossRefGoogle Scholar
  6. 6.
    R. He, Q. Chang, X. Huang, and J. Li, Mech. Compos. Mater. 53, 753 (2018).CrossRefGoogle Scholar
  7. 7.
    T. Ishikawa, Adv. Compos. Mater. 15, 3 (2006).CrossRefGoogle Scholar
  8. 8.
    M. T. T. Huynh, H.-B. Cho, T. Suzuki, H. Suematsu, S. T. Naguyen, K. Niiihara, and T. Nakayama, Compos. Sci. Technol. 154, 165 (2018).CrossRefGoogle Scholar
  9. 9.
    J. G. Zhang, Mech. Compos.Mater. 47, 447 (2011).CrossRefGoogle Scholar
  10. 10.
    V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 43, 6515 (2010).CrossRefGoogle Scholar
  12. 12.
    J. Kim, B.-S. Yim, J.-M. Kim, and J. Kim, Microelectron. Reliab. 52, 595 (2012).CrossRefGoogle Scholar
  13. 13.
    X. Zhao, Q. Zhang, D. Chen, and P. Lu, Macromolecules 43, 2357 (2010).CrossRefGoogle Scholar
  14. 14.
    S. G. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, and A. Ureña, Eur. Polym. J. 61, 206 (2014).CrossRefGoogle Scholar
  15. 15.
    D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, Z.-Sh. Wu, I. Gentle, G. Q. Lu, and H.-M. Cheng, ACS Nano 3, 1745 (2009).CrossRefGoogle Scholar
  16. 16.
    B. Ahmadi-Moghadam, M. Sharafimasooleh, S. Shadlou, and F. Taheri, Mater. Des. 66, 142 (2015).CrossRefGoogle Scholar
  17. 17.
    H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, A.-H. Lu, G.-Y. Ji, and Z.-Z. Yu, Polymer 51, 1191 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, S. Murali, W. Cai, X. L. J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  19. 19.
    T. Wang, M. D. J. Quinn, and S. M. Notley, Carbon 129, 191 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Gantayat, D. Rout, and S. K. Swain, Polym.-Plast. Technol. Eng. 57, 1 (2018).CrossRefGoogle Scholar
  21. 21.
    R. Sun, L. Li, C. Feng, S. Kitipornchai, and J. Yang, Eur. Polym. J. 98, 475 (2018).CrossRefGoogle Scholar
  22. 22.
    R. J. Young, M. Liu, I. A. Kinloch, S. Li, X. Zhao, C. Vallés, and D. G. Papageorgiou, Compos. Sci. Technol. 154, 110 (2018).CrossRefGoogle Scholar
  23. 23.
    Y. Li, S. Wang, Q. Wang, and M. Xing, Composites, Part B 133, 35 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Zhao, Y. Liu, J. Cheng, S. Wu, Z. Wang, H. Hu, and C. Zhou, Polym. Int. 66, 1827 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Li, F. Gao, Z. Xue, Y. Luan, X. Yan, Z. Guo, and Z. Wang, Mater. Des. 137, 438 (2018).CrossRefGoogle Scholar
  26. 26.
    A. Hazarika, B. K. Deka, K. Kong, D. Y. Kim, Y.-W. Nam, J.-H. Choi, C.-G. Kim, Y.-B. Park, and H. W. Park, Composites, Part B 140, 123 (2018).CrossRefGoogle Scholar
  27. 27.
    F.-C. Chiu, Y.-C. Chuang, S.-J. Liao, and Y.-H. Chang, Polym. Test. 65, 197 (2018).CrossRefGoogle Scholar
  28. 28.
    A. Bisht, K. Dasgupta, and D. Lahiri, J. Appl. Polym. Sci. 135, 46101 (2018).CrossRefGoogle Scholar
  29. 29.
    C. May, Epoxy Resins: Chemistry and Technology (Marcel Dekker, Inc., New York, 1987).Google Scholar
  30. 30.
    K. Osouli-Bostanabad, A. Tutunchi, and M. Eskandarzade, Int. J. Adhes. Adhes.75, 145 (2017).Google Scholar
  31. 31.
    A. Tutunchi, R. Kamali, and A. Kianvash, Soft Mater. 14, 1 (2016).CrossRefGoogle Scholar
  32. 32.
    Y. S. Song and J. R. Youn, Carbon 43, 1378 (2005).CrossRefGoogle Scholar
  33. 33.
    E. T. Thostenson and T.-W. Chou, Carbon 44, 3022 (2006).CrossRefGoogle Scholar
  34. 34.
    M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano 3, 3884 (2009).CrossRefGoogle Scholar
  35. 35.
    L.-C. Tang, Y.-J. Wan, K. Peng, Y.-B. Pei, L.-B. Wu, L.-M. Chen, L.-J. Shu, J.-X. Jiang, and G.-Q Lai, Composites, Part A 45, 95 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Liand and W.-H. Zhong, J. Mater. Sci. 46, 5595 (2011).CrossRefGoogle Scholar
  37. 37.
    M. M. Gudarzi and F. Sharif, eXPRESS Polym. Lett. 6, 1017 (2012).CrossRefGoogle Scholar
  38. 38.
    S.-Y. Yang, W.-N. Lin, Y.-L. Huang, H.-W. Tien, J.-Y. Wang, C.-C. M. Ma, S.-M. Li, and Y.-S. Wang, Carbon 49, 793 (2011).CrossRefGoogle Scholar
  39. 39.
    S. H. Aboutalebi, M. M. Gudarzi, Q. B. Zheng, and J.-K. Kim, Adv. Funct. Mater. 21, 2978 (2011).CrossRefGoogle Scholar
  40. 40.
    F. Vahedi, H. R. Shahverdi, M. M. Shokrieh, and M. Esmkhani, Carbon 29, 419 (2014).CrossRefGoogle Scholar
  41. 41.
    U. Khan, P. May, A. O’Neill, and J. N. Coleman, Carbon 48, 4035 (2010).CrossRefGoogle Scholar
  42. 42.
    J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, and C. Liu, Carbon 49, 1094 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. Vahedi
    • 1
  • M. Eskandarzade
    • 2
  • K. Osouli-Bostanabad
    • 3
    • 4
    • 5
    Email author
  • A. Tutunchi
    • 5
  1. 1.Engineering Department, Faculty of EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Mechanical Engineering Department, Faculty of EngineeringUniversity of Mohaghegh ArdabiliArdabilIran
  3. 3.Research Center for Pharmaceutical Nanotechnology, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
  4. 4.Students Research CommitteeTabriz University of Medical SciencesTabrizIran
  5. 5.Department of Materials Engineering, Institute of Mechanical EngineeringUniversity of TabrizTabrizIran

Personalised recommendations