Polymer Science, Series A

, Volume 60, Issue 6, pp 875–885 | Cite as

Mechanically Insulated Graphene/Polymer Nanocomposites with Improved Dielectric Performance and Energy Storage Capacity

  • U. O. UyorEmail author
  • A. P. I. Popoola
  • O. M. Popoola
  • V. S. Aigbodion


Graphene nanoplatelets (GNPs) were mechanically insulated with titanium dioxide (TD) nanopowder to address challenges of high dielectric loss and low breakdown strength associated with polymer/graphene nanocomposites. GNPs were functionalized (fGNPs) and TD was hydroxylated (TD-OH) to ensure wettability of the co-particles and well dispersion in polymer matrix. The composite samples were developed by solution blending and melting compounding processes. Successful modification of the co-particles and insulation of fGNPs were examined using Fourier transform infrared (FTIR), X-ray diffractometer (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). Energy storage capacity, dielectric and electrical properties of the composites were investigated. Insulated fGNPs composites showed significant improvement in energy storage capacity and reduction in dielectric loss with addition of 10 wt % TD-OH compared to bared fGNPs composites. About 92.6% reduction in dielectric loss and 77% increase in energy storage density were recorded for 6.67 wt % fGNPs/10 wt % TD-OH composite compared to 6.67 wt % fGNPs composite at 100Hz. This was due to excellent insulating property of TD-OH on fGNPs. Although dielectric loss was further reduced on addition of 20 wt % TD-OH into fGNPs composites, their dielectric constant and energy storage density were slightly reduced compared to composites containing 10 wt % TD-OH. This study revealed that mechanical insulation of graphene with ceramic nanopowder can suppress energy dissipation associated with polymer/graphene nanocomposites with improve energy storage capacity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Peng, X. Sun, W. Weng, and X. Fang, Polymer Materials for Energy and Electronic Applications, 1st ed. (Elsevier, London; San Diego; Cambridge; Oxford, 2017).Google Scholar
  2. 2.
    S. A. Sherrill, P. Banerjee, G. W. Rubloff, and S. B. Lee, Phys. Chem. Chem. Phys. 13, 20714 (2011).CrossRefGoogle Scholar
  3. 3.
    B. C. Riggs, S. Adireddy, C. H. Rehm, V. S. Puli, R. Elupula, and D. B. Chrisey, Mater. Today: Proc. 2, 3853 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Xihong, J. Adv. Dielectr. 3, 1330001 (2013).CrossRefGoogle Scholar
  5. 5.
    Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, Prog. Mater. Sci. 57, 660 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Fan, L. Wang, J. Yang, F. Chen, and M. Zhong, Nanotechnology 23, 1 (2012).Google Scholar
  7. 7.
    F. He, S. Lau, H. L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).CrossRefGoogle Scholar
  8. 8.
    D. Wang, T. Zhou, J.-W. Zha, J. Zhao, C.-Y. Shi, and Z.-M. Dang, J. Mater. Chem. A 1, 6162 (2013).CrossRefGoogle Scholar
  9. 9.
    K. Han, Q. Li, Z. Chen, M. R. Gadinski, L. Dong, C. Xiong, and Q. Wang, J. Mater. Chem. C 1, 7034 (2013).CrossRefGoogle Scholar
  10. 10.
    Y.-J. Wan, P.-L. Zhu, S.-H. Yu, W.-H. Yang, R. Sun, C.-P. Wong, and W.-H. Liao, Compos. Sci. Technol. 141, 48 (2017).CrossRefGoogle Scholar
  11. 11.
    N. Maity, A. Mandal, and A. K. Nandi, Polymer 103, 83 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu, Z. Wang, and J.-K. Kim, Carbon 89, 102 (2015).CrossRefGoogle Scholar
  13. 13.
    P. Xu, H. Gui, X. Wang, Y. Hu, and Y. Ding, Compos. Sci. Technol. 117, 282 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Sun, Q. Xue, Q. Guo, Y. Tao, and W. Xing, Composites, Part A 67, 252 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Li, Z. Chen, L. Liu, J. Chen, M. Jiang, and C. Xiong, Compos. Sci. Technol.121, 49 (2015).Google Scholar
  16. 16.
    D. Wang, Y. Bao, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, ACS Appl. Mater. Interfaces 4, 6273 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Li, M. Fan, K. Wu, F. Yu, S. Chai, F. Chen, and Q. Fu, Composites, Part A 73, 85 (2015).CrossRefGoogle Scholar
  18. 18.
    W. Tong, Y. Zhang, L. Yu, F. Lv, L. Liu, Q. Zhang, and Q. An, Chem. Phys. Lett. 638, 43 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Li, W. Yang, X. Gao, S. Y. R. Sun, and C.-P. Wong, in Proceedings of 16th IEEE International Conference on Electronic Packaging Technology, Chagsha, China, 2015 (Changsha, 2015), pp. 866–870.Google Scholar
  20. 20.
    S. K. Yadav and J. W. Cho, Appl. Surf. Sci. 266, 360 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Ijadpanah-Saravy, M. Safari, A. Khodadadi-Darban, and A. Rezaei, Anal. Lett. 47, 1772 (2014).CrossRefGoogle Scholar
  22. 22.
    L. Chu, Q. Xue, J. Sun, F. Xia, W. Xing, D. Xia, and M. Dong, Compos. Sci. Technol. 86, 70 (2013).CrossRefGoogle Scholar
  23. 23.
    U. O. Uyor, A. P. Popoola, O. Popoola, and V. S. Aigbodion, J. Thermoplast. Compos. Mater. (2018). doi 10.1177/0892705718805522Google Scholar
  24. 24.
    B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang, M.-M. Lu, H.-B. Jin, X.-Y. Fang, W.-Z. Wang, and J. Yuan, Carbon 65, 124 (2013).CrossRefGoogle Scholar
  25. 25.
    X.-Y. Fang, X.-X. Yu, H.-M. Zheng, H.-B. Jin, L. Wang, and M.-S. Cao, Phys. Lett. A 379, 2245 (2015).CrossRefGoogle Scholar
  26. 26.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, and W. Wang, Adv. Mater. 26, 3484 (2014).CrossRefGoogle Scholar
  27. 27.
    I. S. Elashmawi, N. S. Alatawi, and N. H. Elsayed, Results Phys. 7, 636 (2017).CrossRefGoogle Scholar
  28. 28.
    N. Maity, A. Mandal, and A. K. Nandi, Polymer 65, 154 (2015).CrossRefGoogle Scholar
  29. 29.
    C. Yang, S.-J. Hao, S.-L. Dai, and X.-Y. Zhang, Carbon 117, 301 (2017).CrossRefGoogle Scholar
  30. 30.
    A. Ponomarenko, V. Shevchenko, and N. Enikolopyan, in Filled Polymers I Science and Technology (Springer, Berlin; Heidelberg, 1990), pp. 125–147.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • U. O. Uyor
    • 1
    Email author
  • A. P. I. Popoola
    • 1
  • O. M. Popoola
    • 2
  • V. S. Aigbodion
    • 1
    • 3
  1. 1.Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of TechnologyPretoria WestPretoriaSouth Africa
  2. 2.Department of Electrical Engineering, Tshwane University of TechnologyPretoria WestPretoriaSouth Africa
  3. 3.Department of Metallurgical and Materials EngineeringUniversity of NigeriaNsukka, Enugu-StateNigeria

Personalised recommendations