Polyacetal/Acrylonitrile-Butadiene-Styrene/Thermoplastic Polyurethane Blends and Their Nanocomposites Morphological and Rheological Behavior as a Tertiary Blend
- 1 Downloads
Abstract
The effect of thermoplastic polyurethane (TPU) on morphological and rheological properties of polyacetal/acrylonitrile-butadiene-styrene (POM/ABS) blends has been investigated. The morphological investigations revealed that addition of TPU to the blends improves the dispersion of dispersed phase, regardless of the dominant phase. In the POM rich phase blend, this effect was more significant and morphology changed from non-uniform to droplet-matrix. The rheological studies showed that complex viscosity as well as elasticity, increased by adding TPU to the POM/ABS blends. This improvement in rheological properties was more significant in the POM rich phase blend, which was proved by positively deviating blends (PDB) in the complex viscosity curve in the entire range of frequency obtained from the log-additivity rule. Such a phenomenon could have occurred due to partial miscibility of TPU with POM and placement of TPU at the interface and/or in POM phase. Transmission electron microscopy (TEM) micrographs showed that addition of Cloisite 30B nanoclay into the blend creates both intercalated and tactoids morphology. X-ray powder diffraction (XRD) analysis also confirmed the presence of two different types of nanoclay dispersion. TEM results also demonstrated that nanoclay particles morphology was intercalated and was located in the ABS phase as well as phase interfaces.
Preview
Unable to display preview. Download preview PDF.
References
- 1.E. M. Araújo, E. Hage, Jr., and A. J. F. Carvalho, J. Appl. Polym. Sci. 87, 842 (2003).CrossRefGoogle Scholar
- 2.E. M. Araújo, E. Hage, Jr., and A. J. F. Carvalho, J. Mater. Sci. 38, 3515 (2003).CrossRefGoogle Scholar
- 3.C. W. Lee, S. H. Ryu, and H. S. Kim, J. Appl. Polym. Sci. 64, 1595 (1997).CrossRefGoogle Scholar
- 4.B. Majumdar, H. Keskkula, and D. R. Paul, Polymer (Guildford, England) 35, 5453 (1994).CrossRefGoogle Scholar
- 5.W. Tang, H. Wang, J. Tang, and H. Yuan, J. Appl. Polym. Sci. 127, 3033 (2013).CrossRefGoogle Scholar
- 6.W. Yang, X.-L. Wang, J. Li, X. Yan, S. Ge, S. Tadakamall, and Z. Guo, Polym. Eng. Sci. 58, 1127 (2018).CrossRefGoogle Scholar
- 7.G. Kumar, N. R. Neelakantan, and N. Subramanian, J. Mater. Sci. 30, 1480 (1995).CrossRefGoogle Scholar
- 8.K. Palanivelu, S. Balakrishnan, and P. Rengasamy, Polym. Test. 19, 75 (2000).CrossRefGoogle Scholar
- 9.M. Mehrabzadeh and D. Rezaie, J. Appl. Polym. Sci. 84, 2573 (2002).CrossRefGoogle Scholar
- 10.X. Gao, C. Qu, and Q. Fu, Polym. Int. 53, 1666 (2004).CrossRefGoogle Scholar
- 11.Z. Cheng and Q. Wang, Polym. Int. 55, 1075 (2006).CrossRefGoogle Scholar
- 12.G. Q. Pan, J. Y. Chen, and H. L. Li, Plast., Rubber Compos. 36, 291 (2007).CrossRefGoogle Scholar
- 13.C. H. Dan, M. H. Lee, Y. D. Kim, B. H. Min, and J. H. Kim, Polymer 47, 6718 (2006).CrossRefGoogle Scholar
- 14.L. Pizzatto, A. Lizot, R. Fiorio, C. L. Amorim, G. Machado, M. Giovanela, A. J. Zattera, and J. S. Crespo, Mater. Sci. Eng., C 29, 474 (2009).CrossRefGoogle Scholar
- 15.J. G. Drobny, Handbook of Thermoplastic Elastomers (William Andrew, Oxford; Waltham; San Diego, USA, 2007).Google Scholar
- 16.F. Chang and M. Yang, Polym. Eng. Sci. 30, 543 (1990).CrossRefGoogle Scholar
- 17.G. Kumar, M. R. Arindam, N. R. Neelakantan, and N. Subramanian, J. Appl. Polym. Sci. 50, 2209 (1993).CrossRefGoogle Scholar
- 18.X. Zheng, C. Zhang, C. Luo, G. Tian, L. Wang, and Y. Li, Ind. Eng. Chem. Res. 55, 11 (2016).Google Scholar
- 19.G. Kumar, N. R. Neelakantan, and N. Subramanian, Polym.-Plast. Technol. Eng. 32, 33 (1993).CrossRefGoogle Scholar
- 20.K. L. Lam, A. A. Bakar, and Z. A. M. Ishak, Polym. Eng. Sci. 45, 710 (2005).CrossRefGoogle Scholar
- 21.K. Kawaguchi and Y. Tajima, J. Appl. Polym. Sci. 100, 4375 (2006).CrossRefGoogle Scholar
- 22.C. A. Haper, Handbook of Plastics, Elastomers and Composites, 4th ed. (McGraw-Hill, New York, 2002).Google Scholar
- 23.J. V. Rutkowski and B. C. Levin, Fire Mater. 10, 93 (1986).CrossRefGoogle Scholar
- 24.A. K. Das, S. Suin, N. K. Shrivastava, S. Maiti, J. K. Mishra, and B. B. Khatua, Polym. Compos. 35, 273 (2014).CrossRefGoogle Scholar
- 25.A. Mojarrad, Y. Jahani, and M. Barikani, J. Appl. Polym. Sci. 120, 2173 (2011).CrossRefGoogle Scholar
- 26.S. Jafari, P. Pötschke, M. Stephan, H. Warth, and H. Alberts, Polymer 43, 6985 (2002).CrossRefGoogle Scholar
- 27.K. Pielichowski and A. Leszczynska, Polimery 51, 143 (2006).CrossRefGoogle Scholar
- 28.G. Zhang, T. Wu, W. Lin, Y. Tan, R. Chen, Z. Huang, X. Yin, and J. Qu, Compos. Sci. Technol. 145, 157 (2017).CrossRefGoogle Scholar
- 29.S. Thomas, A. Boudenne, L. Ibos, Y. Candau, in Handbook Multiphase Polymer Systems (John Wiley and Sons, Ltd., Chichester, UK, 2011).Google Scholar
- 30.E. Feyz, Y. Jahani, M. Esfandeh, M. Ghafelehbashi, and S. H. Jafari, J. Appl. Polym. Sci. 21, 1796(2010).Google Scholar
- 31.Y. Aoki and M. Watanabe, Polym. Eng. Sci. 32, 878 (1992).CrossRefGoogle Scholar
- 32.M. L. Foong, K. C. Tam, and N. H. Loh, J. Mater. Sci. 30, 3625 (1995).CrossRefGoogle Scholar
- 33.R. Li, W. Yu, and C. Zhou, Polym. Bull. 56, 455 (2006).CrossRefGoogle Scholar
- 34.L. A. Utracki, J. Rheol. 35, 1615 (1991).CrossRefGoogle Scholar
- 35.Y. Fang, P. J. Carreau, and P. G. Lafleur, Polym. Eng. Sci. 45, 1254 (2005).CrossRefGoogle Scholar
- 36.L. A. Utracki, in Polymer Blends Handbook, Ed. by L. A. Utracki and C. A. Wilkie (Springer, Dordrecht, Netherlands, 2003), pp. 1559–1732.Google Scholar
- 37.L. A. Utracki and M. R. Kamal, Polym. Eng. Sci. 22, 96 (1982).CrossRefGoogle Scholar
- 38.L. A. Utracki and M. R. Kamal, in Polymer Blends Handbook, Ed. by L. A. Utracki and C. A. Wilkie (Springer, Dordrecht, Netherlands, 2003).Google Scholar