Polymer Science, Series A

, Volume 60, Issue 6, pp 757–769 | Cite as

Hyaluronic Acid and Chitosan Surface Grafted Polylactide Single Crystals as Hydrophilic Building Blocks for Scaffold Materials

  • Ahmed BakryEmail author
  • Mohamed S. A. Darwish
Medical Polymers


Polylactide has a well-known biocompatibility and processability, but its surface hydrophobicity could limit their use as a proper scaffold for cell growth and proliferation. The present work aims to fabricate the polylactide scaffolds by a bottom-up approach from pre-modified building blocks as an efficient way to overcome such a challenge and to provide a surface with a spatially organized chemical structure. Pre-modified polylactide single crystals (PLLAsc) with chitosan or hyaluronic acid, which are hydrophilic and bioactive macromolecules, were assembled into three-dimensional scaffolds. PLLAsc were hydrolyzed to introduce carboxylic groups at the surface and then the grafting reactions were carried out by carbodiimide chemistry. Although chitosan was grafted directly, the hydrolyzed surface was endowed with adipic acid dihydrazide as a spacer before hyaluronic acid grafting. The analyses of the modified surfaces verified the enhancement in surface hydrophilicity without any drastic effects on single crystals properties. By fabricating the scaffolds by using a compression molding salt leaching technique in the absence of heat or gluing materials, they were found to have an open interconnected structure, a hydrophilic surface and sustainable mechanical properties. Biological activity of scaffolds was examined by using mouse fibroblasts. Scaffolds having hyaluronic acid and chitosan surface grafted PLLAsc showed better interface for cell growth than pristine ones. Obviously, prefunctionalized PLLAsc with biomacromolecules could be used as proper building blocks for designing polymer scaffolds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Kuznetsova, A. Ageykin, A. Koroleva, A. Deiwick, A. Shpichka, A. Solovieva, S. Kostjuk, A. Meleshina, S. Rodimova, A. Akovanceva, and D. Butnaru, Biofabrication 9, 2 (2017).CrossRefGoogle Scholar
  2. 2.
    B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, Adv. Drug Delivery Rev. 107, 163 (2016).CrossRefGoogle Scholar
  3. 3.
    R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci. 35, 3 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, and L. Gao, Biomaterials 23, 1603 (2002).CrossRefGoogle Scholar
  5. 5.
    V. Korzhikov-Vlakh, M. Krylova, E. Sinitsyna, E. Ivankova, I. Averianov, and T. B. Tennikova, Polymers 8, 418 (2016).CrossRefGoogle Scholar
  6. 6.
    H. J. Chung and T. G. Park, Adv. Drug Delivery Rev. 59, 249 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Bakry, A. Martinelli, M. Bizzarri, A. Cucina, L. D’Ilario, I. Francolini, A. Piozzi, and S. Proietti, Polym. Int. 61, 7 (2012).CrossRefGoogle Scholar
  8. 8.
    L. D’ilario, I. Francolini, A. Martinelli, and A. Piozzi, Macromol. Rapid Commun. 28, 1900 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Casini, L. Petrone, A. Bakry, I. Francolini, P. Di Bonito, C. Giorgi, A. Martinelli, A. Piozzi, and L. D’Ilario, J. Controlled Release 48, 1 (2010).Google Scholar
  10. 10.
    S. Wang, W. Cui, and J. Bei, Anal. Bioanal. Chem. 381, 3 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Zeng, J. Ye, Z. Cui, J. Si, Q. Wang, X. Wang, K. Peng, and W. Chen, Mater. Sci. Eng., C 77, 92 (2017).CrossRefGoogle Scholar
  12. 12.
    H. S. Yoo, E. A. Lee, J. J. Yoon, and T. G. Park, Biomaterials 26, 14 (2005).Google Scholar
  13. 13.
    I. V. Averianov, V. A. Korzhikov, and T. B. Tennikova, Polym. Sci., Ser. B 57, 4 (2015).CrossRefGoogle Scholar
  14. 14.
    F. Causa, P. A. Netti, and L. Ambrosio, Biomaterials 28, 34 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, and P. A. Netti, Biomaterials 29, 36 (2008).CrossRefGoogle Scholar
  16. 16.
    T. Iwata and Y. Doi, Macromolecules 31, 8 (1998).Google Scholar
  17. 17.
    I. K. Kang, B. K. Kwon, J. H. Lee, and H. B. Lee, Biomaterials 14, 10 (1993).CrossRefGoogle Scholar
  18. 18.
    Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials 24, 21 (2003).Google Scholar
  19. 19.
    J. S. Pieper, T. Hafmans, J. H. Veerkamp, and T. H. van Kuppevelt, Biomaterials 21, 6 (2000).Google Scholar
  20. 20.
    E. W. Fischer, H. J. Sterzel, and G. Wagner, Kolloid Z. Z. Polym. 251, 11 (1973).Google Scholar
  21. 21.
    K. M. Ashraf, C. Wang, S. S. Nair, K. J. Wynne, D. A. Higgins, and M. M. Collinson, Langmuir 33, 17 (2017).CrossRefGoogle Scholar
  22. 22.
    R. B. Diego, J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez, J. Biomed. Mater. Res., Part B 81, 2 (2007).Google Scholar
  23. 23.
    S. Van Bael, T. Desmet, Y. C. Chai, G. Pyka, P. Dubruel, J. P. Kruth, and J. Schrooten, Mater. Sci. Eng., C 33, 6 (2013).CrossRefGoogle Scholar
  24. 24.
    B. Kalb and J. Pennings, Polymer 21, 6 (1980).Google Scholar
  25. 25.
    J. K. Park, J. Yeom, E. J. Oh, M. Reddy, J. Y. Kim, D.W. Cho, H. P. Lim, N. S. Kim, S. W. Park, H. I. Shin, and D. J. Yang, Acta Biomater. 5, 9 (2009).Google Scholar
  26. 26.
    F. A. Morsy, S. Y. Elsayad, A. Bakry, and M. A. Eid, Surf. Coat. Int., Part B 89, 1 (2006).CrossRefGoogle Scholar
  27. 27.
    M. Mason, K. P. Vercruysse, K. R. Kirker, R. Frisch, D. M. Marecak, G. D. Prestwich, and W. G. Pitt, Biomaterials 2, 1 (2000).Google Scholar
  28. 28.
    A. Bakry, R. Aversano, L. D’Ilario, V. Di Lisio, I. Francolini, A. Piozzi, and A. Martinelli, J. Appl. Polym. Sci. 133, 19 (2016).CrossRefGoogle Scholar
  29. 29.
    C. R. Chandraiahgari, A. De Bellis, G. Martinelli, A. Bakry, A. Tamburrano, and M. Sarto, in Proceedings of the IEEE International Conference on Nanotechnology (IEEE-NANO 2015), Rome, Italy, 2015 (Rome, 2015), p. 1346.Google Scholar
  30. 30.
    X. Niu, Q. Feng, M. Wang, X. Guo, and Q. Zheng, Polym. Degrad. Stab. 94, 2 (2009).CrossRefGoogle Scholar
  31. 31.
    A. Martinelli, A. Bakry, L. D’Ilario, I. Francolini, A. Piozzi, and V. Taresco, Eur. J. Pharm. Biopharm. 88, 2 (2014).CrossRefGoogle Scholar
  32. 32.
    A. S. Ismail, M. S. Darwish, and E. A. Ismail, Egypt. J. Pet. 26, 1 (2017).CrossRefGoogle Scholar
  33. 33.
    F. S. Palumbo, G. Pitarresi, D. Mandracchia, G. Tripodo, and G. Giammona, Carbohydr. Polym. 66, 3 (2006).CrossRefGoogle Scholar
  34. 34.
    F. Donghui, W. Beibei, X. Zheng, and G. Qisheng, J. Wuhan Univ. Technol., Mater. Sci. Ed. 21, 3 (2006).Google Scholar
  35. 35.
    J. D. Andrade, L. M. Smith, and D. E. Gregonis, in Surface and Interfacial Aspects of Biomedical Polymers (Springer, Boston, MA, 1985), pp. 249–292.CrossRefGoogle Scholar
  36. 36.
    R. H. Dettre and R. E. Johnson, Jr., J. Phys. Chem. 69, 5 (1965).Google Scholar
  37. 37.
    Y. K. Gong, F. Mwale, M. R. Wertheimer, and F. M. Winnik, J. Biomater. Sci., Polym. Ed. 15, 11 (2004).CrossRefGoogle Scholar
  38. 38.
    Y. Inoue, J. Watanabe, and K. Ishihara, J. Colloid Interface Sci. 274, 2 (2004).Google Scholar
  39. 39.
    S. Sosnowski, P. Woźniak, and M. Lewandowska-Szumieł, Macromol. Biosci. 6, 6 (2006).CrossRefGoogle Scholar
  40. 40.
    U. D’Amora, M. D’Este, D. Eglin, F. Safari, C. M. Sprecher, A. Gloria, R. De Santis, M. Alini, and L. Ambrosio, J. Tissue Eng. Regener. Med. 12, 321 (2018).CrossRefGoogle Scholar
  41. 41.
    L. Wu, J. Zhang, D. Jing, and J. Ding, J. Biomed. Mater. Res., Part A 76, 2 (2006).Google Scholar
  42. 42.
    A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, J. Biomed. Mater. Res. 51, 4 (2000).CrossRefGoogle Scholar
  43. 43.
    S. G. Hu, C. H. Jou, and M. C. Yang, Biomaterials 24, 16 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceHelwan UniversityAin Helwan, CairoEgypt
  2. 2.Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomor StreetEl Zohour RegionNasr City, CairoEgypt

Personalised recommendations