Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 723–733 | Cite as

Evolution of Microstructure in Block Copolymer Thin Films during Zone Annealing

  • A. S. MerekalovEmail author
  • Y. I. Derikov
  • A. A. Ezhov
  • E. N. Govorun
  • Y. V. Kudryavtsev
Structure and Properties
  • 6 Downloads

Abstract

The effect of zone annealing on a microstructure from horizontal and vertical cylinders in the microphase-separated films of polystyrene–polybutadiene–polystyrene triblock copolymer and polystyrene–poly(4-vinylpyridine) diblock copolymer is studied. It is shown that processing of the films of different thicknesses at various maximum thermal front temperatures which do not exceed the temperature of orderdisorder transition does not lead to a noticeable increase in their degree of ordering. On the contrary, once the transition temperature is approached, the interfacial area between domains formed by different types of blocks is increased and the order in their arrangement disappears, with the thermal stability of the structure falling with an increase in film thickness. Thus, the substantial microstructure ordering during the cold zone annealing of the polystyrene–poly(methyl methacrylate) diblock copolymer described in the literature has not yet been reproduced for other systems. The maximum rate of gradient zone motion at which this effect is to be expected is estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Bates and F. S. Bates, Macromolecules 50 (3), 3 (2017).CrossRefGoogle Scholar
  2. 2.
    V. Abetz and P. F. W. Simon, in Block Copolymers, Ed. by V. Abetz (Springer, Berlin; Heidelberg, 2005), Vol. 189.Google Scholar
  3. 3.
    A. J. Meuler, M. A. Hillmyer, and F. S. Bates, Macromolecules 42 (19), 7221 (2009).CrossRefGoogle Scholar
  4. 4.
    F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, and G. H. Fredrickson, Science 336 (6080), 434 (2012).CrossRefGoogle Scholar
  5. 5.
    I. W. Hamley, Prog. Polym. Sci. 34 (11), 1161 (2009).CrossRefGoogle Scholar
  6. 6.
    H.-C. Kim, S.-M. Park, and W. D. Hinsberg, Chem. Rev. 110 (1), 146 (2010).CrossRefGoogle Scholar
  7. 7.
    P. D. Topham, A. J. Parnell, and R. C. Hiorns, J. Polym. Sci., Polym. Phys. Ed. 49 (16), 1131 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Zhang and P. K. Shen, Chem. Rev. 112 (5), 2780 (2012).CrossRefGoogle Scholar
  9. 9.
    S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey, Nature 424 (6947), 411 (2003).CrossRefGoogle Scholar
  10. 10.
    R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, T. R. Albrecht, J. J. de Pablo, and P. F. Nealey, Science 321 (5891), 936 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Y. Cheng, C. T. Rettner, D. P. Sanders, H. C. Kim, and W. D. Hinsberg, Adv. Mater. 20 (16), 3155 (2008).CrossRefGoogle Scholar
  12. 12.
    R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Mater. 13 (15), 1152 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Science 323 (5917), 1030 (2009).CrossRefGoogle Scholar
  14. 14.
    J. K. W. Yang, Y. S. Jung, J.-B. Chang, R. A. Mickiewicz, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, Nat. Nanotechnol. 5 (4), 256 (2010).CrossRefGoogle Scholar
  15. 15.
    I. Bita, J. K. W. Yang, Y. J. Jung, C. A. Ross, E. L. Thomas, and K. K. Berggren, Science 321 (5891), 939 (2008).CrossRefGoogle Scholar
  16. 16.
    R. Register, Nat. Nanotechnol. 8 (9), 618 (2013).CrossRefGoogle Scholar
  17. 17.
    M. S. Onses, C. Song, L. Williamson, E. Sutanto, P. M. Ferreira, A. G. Alleyne, P. F. Nealey, H. Ahn, and J. A. Rogers, Nat. Nanotechnol. 8 (9), 667 (2013).CrossRefGoogle Scholar
  18. 18.
    J. A. Luo and T. H. Epps, Macromolecules 46 (19), 7567 (2013).CrossRefGoogle Scholar
  19. 19.
    S. B. Darling, Prog. Polym. Sci. 32 (10), 1152 (2007).CrossRefGoogle Scholar
  20. 20.
    C. Sinturel, M. Vayer, M. Morris, and M. A. Hillmyer, Macromolecules 46 (14), 5399 (2013).CrossRefGoogle Scholar
  21. 21.
    C. Liedel, K. A. Schindler, M. J. Pavan, C. Lewin, C. W. Pester, M. Ruppel, V. S. Urban, R. Shenhar, and A. Boeker, Small 9 (19), 3276 (2013).Google Scholar
  22. 22.
    C. M. Bates, M. J. Maher, D. W. Janes, C. J. Ellison, and C. G. Wilson, Macromolecules 47 (1), 2 (2014).CrossRefGoogle Scholar
  23. 23.
    Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21 (9), 2246 (2006).CrossRefGoogle Scholar
  24. 24.
    K. W. Gotrik and C. A. Ross, Nano Lett. 13 (11), 5117 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Hu, M. Gopinadhan, and C. C. Osuji, Soft Matter 10 (22), 3867 (2014).CrossRefGoogle Scholar
  26. 26.
    D. Yong, H. M. Jin, S. O. Kim, and J. U. Kim, Macromolecules 51 (4), 1418 (2018).CrossRefGoogle Scholar
  27. 27.
    K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, Polym. Eng. Sci. 50 (6), 1122 (2010).CrossRefGoogle Scholar
  28. 28.
    S. S. Lamarre, C. Lemay, C. Labresque, and A. M. Ritcey, Langmuir 29 (34), 10891 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Halevi, S. Halivni, M. Oded, A. H. E. Mueller, U. Banin, and R. Shenhar, Macromolecules 47 (9), 3022 (2014).CrossRefGoogle Scholar
  30. 30.
    B. C. Berry, A. W. Bosse, J. F. Douglas, R. L. Jones, and A. Karim, Nano Lett. 7 (9), 2789 (2007).CrossRefGoogle Scholar
  31. 31.
    K. G. Yager, N. J. Fredin, X. Zhang, B. C. Berry, A. Karim, and R. L. Jones, Soft Matter 6 (1), 92 (2010).CrossRefGoogle Scholar
  32. 32.
    G. Singh, K. G. Yager, D.-M. Smilgies, M. M. Kulkarni, D. G. Bucknall, and A. Karim, Macromolecules 45 (17), 7107 (2012).CrossRefGoogle Scholar
  33. 33.
    C. Ye, Y. Sun, A. Karim, and B. D. Vogt, Macromolecules 48 (20), 7567 (2015).CrossRefGoogle Scholar
  34. 34.
    S. Samant, J. Strzalka, K. G. Yager, K. Kisslinger, D. Grolman, M. Basutkar, N. Salunke, G. Singh, B. Berry, and A. Karim, Macromolecules 49 (22), 8633 (2016).CrossRefGoogle Scholar
  35. 35.
    G. Singh, K. G. Yager, B. Berry, H.-C. Kim, and A. Karim, ACS Nano 6 (11), 10335 (2012).CrossRefGoogle Scholar
  36. 36.
    G. Singh, S. Batra, R. Zhang, H. Yuan, K. G. Yager, M. Cakmak, B. Berry, and A. Karim, ACS Nano 7 (6), 5291 (2013).CrossRefGoogle Scholar
  37. 37.
    V. V. Ginzburg, J. D. Weinhold, and P. Trefonas, J. Polym. Sci., Polym. Phys. Ed. 53 (2), 90 (2015).CrossRefGoogle Scholar
  38. 38.
    H. Takahashi, N. Laachi, K. T. Delaney, S.-M. Hur, C. J. Weinheimer, D. Shykind, and G. H. Fredrickson, Macromolecules 45 (15), 6253 (2012).CrossRefGoogle Scholar
  39. 39.
    N. Laachi, K. T. Delaney, B. Kim, S.-M. Hur, R. Bristol, D. Shykind, C. J. Weinheimer, and G. H. Fredrickson, J. Polym. Sci.,Polym. Phys. Ed. 53 (2), 142 (2015).CrossRefGoogle Scholar
  40. 40.
    A. A. Rudov, E. S. Patyukova, I. V. Neratova, P. G. Khalatur, D. Posselt, C. M. Papadakis, and I. I. Potemkin, Macromolecules 46 (14), 5786 (2013).CrossRefGoogle Scholar
  41. 41.
    S.-M. Hur, G. S. Khaira, A. Ramirez-Hernandez, M. Moeller, P. F. Nealey, and J. J. de Pablo, ACS Macro Lett 4 (1), 11 (2015).CrossRefGoogle Scholar
  42. 42.
    N. Dixit, A. Pape, L. Rong, E. Joseph, and S. M. Martin, Macromolecules 48 (4), 1144 (2015).CrossRefGoogle Scholar
  43. 43.
    A. Singh, R. Krishnan, and S. Puri, Eur. Polym. Lett. 109 (2), 26006 (2015).CrossRefGoogle Scholar
  44. 44.
    P. W. Majewski and K. G. Yager, J. Phys.: Condens. Matter 28 (40) (2016).Google Scholar
  45. 45.
    Zh. Cong, L. Zhang, L. Wang, and J. Lin, J. Chem. Phys. 144 (11), 114901 (2016).CrossRefGoogle Scholar
  46. 46.
    J. D. Hill and P. C. Millett, Sci. Rep. 7, Article No. 5250 (2017).Google Scholar
  47. 47.
    X. Wan, T. Gao, L. Zhang, and J. Lin, Phys. Chem. Chem. Phys. 19 (9), 6707 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Merekalov
    • 1
    Email author
  • Y. I. Derikov
    • 1
  • A. A. Ezhov
    • 1
    • 2
  • E. N. Govorun
    • 2
  • Y. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations