Polymer Science, Series A

, Volume 60, Issue 6, pp 707–722 | Cite as

Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics

  • Sadegh Ghorbani
  • Hossein Eyni
  • Sajad Razavi Bazaz
  • Hojjatollah Nazari
  • Leila Salari Asl
  • Hamid Zaferani
  • Vali Kiani
  • Ali Abouei Mehrizi
  • Masoud SoleimaniEmail author


Hydrogels are mainly structures formed from biopolymers and/or polyelectrolytes, and contain large amounts of trapped water. Smart cellulose-based superabsorbent hydrogels are the new generation of scaffold which fabricated directly from native cellulose (including bacterial cellulose) via cellulose dissolution. Cellulose has many hydroxyl groups and can be used to prepare hydrogels with fascinating structures and properties. Cellulose hydrogels based on its derivatives, including methyl cellulose (MC), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), and carboxymethyl cellulose (CMC) can be fabricated by various methods. On the basis of the cross-linking method, the hydrogels can be divided into chemical and physical gels. Physical gels are formed by molecular self-assembly through ionic or hydrogen bonds, while chemical gels are formed by covalent bonds. Composite smart hydrogels are prepared using cellulose in conjunction with other polymers through blending, formation of polyelectrolyte complexes, and interpenetrating polymer networks (IPNs) technology. According to type of superabsorbent cellulose-based hydrogels fabrication methods, there are many various techniques to evaluate quality of them. Briefly, some of these means generally used to assess the hydrogel are described as following. The obtained gel membranes are characterized by infrared spectroscopy, scanning electron microscopy, thermo gravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic extensional properties, respectively. This review highlights the recent progress in smart cellulose-based superabsorbent hydrogel designs, fabrication approaches and characterization methods, leading to the development of cellulose based smart superabsorbent hydrogels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Ahmed, J. Adv. Res. 6, 105 (2015).CrossRefPubMedGoogle Scholar
  2. 2.
    S. Jin, M. Liu, F. Zhang, S. Chen, and A. Niu, Polymer 47, 1526 (2006).CrossRefGoogle Scholar
  3. 3.
    Y. Yue, X. Sheng, and P. Wang, Eur. Polym. J. 45, 309 (2009).CrossRefGoogle Scholar
  4. 4.
    Q. Z. Yan, W. F. Zhang, G. D. Lu, X. T. Su, and C. C. Ge, Chem.-A Eur. J. 11, 6609 (2005).CrossRefGoogle Scholar
  5. 5.
    R. P. Washington and O. Steinbock, J. Am. Chem. Soc. 123, 7933 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    J. Zhang, L. Wang, and A. Wang, Macromol. Mater. Eng. 291, 612 (2006).CrossRefGoogle Scholar
  7. 7.
    A. Pourjavadi, M. Sadeghi, and H. Hosseinzadeh, Polym. Adv. Technol. 15, 645 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Pourjavadi, G. Mahdavinia, and M. Zohuriaan-Mehr, J. Appl. Polym. Sci. 90, 3115 (2003).CrossRefGoogle Scholar
  9. 9.
    D. Zhao, G. Liao, G. Gao, and F. Liu, Macromolecules 39, 1160 (2006).CrossRefGoogle Scholar
  10. 10.
    H. S. Kang, S. H. Park, Y. G. Lee, and T. I. Son, J. Appl. Polym. Sci. 103, 386 (2007).CrossRefGoogle Scholar
  11. 11.
    J. E. Wong, A. M. Díez-Pascual, and W. Richtering, Macromolecules 42, 1229 (2008).CrossRefGoogle Scholar
  12. 12.
    Y. Li, C. Liu, Y. Tan, K. Xu, C. Lu, and P. Wang, Carbohydr. Polym. 110, 87 (2014).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Shang, Z. Shao, and X. Chen, Polymer 49, 5520 (2008).CrossRefGoogle Scholar
  14. 14.
    C. Wang, H. Liu, Q. Gao, X. Liu, and Z. Tong, Carbohydr. Polym. 71, 476 (2008).CrossRefGoogle Scholar
  15. 15.
    T. R. Hoare and D. S. Kohane, Polymer 49, 1993 (2008).CrossRefGoogle Scholar
  16. 16.
    D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Angew. Chem., Int. Ed. 44, 3358 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Miyamoto, S. I. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki, J. Biomed. Mater. Res., Part A 23, 125 (1989).CrossRefGoogle Scholar
  18. 18.
    E. Entcheva, H. Bien, L. Yin, C.-Y. Chung, M. Farrell, and Y. Kostov, Biomaterials 25, 5753 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    I. Ohmine and T. Tanaka, J. Chem. Phys. 77, 5725 (1982).CrossRefGoogle Scholar
  20. 20.
    S. M. Ibrahim, K. M. El Salmawi, and A. Zahran, J. Appl. Polym. Sci. 104, 2003 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Farzamfar, M. Naseri-Nosar, A. Vaez, F. Esmaeilpour, A. Ehterami, H. Sahrapeyma, H. Samadian, A.-A. Hamidieh, S. Ghorbani, and A. Goodarzi, Cellulose 25, 1229 (2018).CrossRefGoogle Scholar
  22. 22.
    P. K. Murthy, Y. M. Mohan, K. Varaprasad, B. Sreedhar, and K. M. Raju, J. Colloid Interface Sci. 318, 217 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    J. Kim, K.-W. Lee, T. E. Hefferan, B. L. Currier, M. J. Yaszemski, and L. Lu, Biomacromolecules 9, 149 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    B. Adhikari and S. Majumdar, Prog. Polym. Sci. 29, 699 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Pourjavadi, H. Ghasemzadeh, and R. Soleyman, J. Appl. Polym. Sci. 105, 2631 (2007).CrossRefGoogle Scholar
  26. 26.
    R. A. Rodríguez, C. Alvarez-Lorenzo, and A. Concheiro, J. Controlled Release 86, 253 (2003).CrossRefGoogle Scholar
  27. 27.
    X.-Z. Zhang, Y.-Y. Yang, and T.-S. Chung, J. Colloid Interface Sci. 246, 105 (2002).CrossRefPubMedGoogle Scholar
  28. 28.
    T. Ono, T. Sugimoto, S. Shinkai, and K. Sada, Nat. Mater. 6, 429 (2007).CrossRefPubMedGoogle Scholar
  29. 29.
    B. Holaday, G. Waugh, V. E. Moukaddem, J. West, and S. Harshman, J. Pediatr. Health Care 9, 67 (1995).CrossRefPubMedGoogle Scholar
  30. 30.
    A. Sannino, A. Esposito, A. D. Rosa, A. Cozzolino, L. Ambrosio, and L. Nicolais, J. Biomed. Mater. Res., Part A 67, 1016 (2003).CrossRefGoogle Scholar
  31. 31.
    F. Wang, Y. Yang, Y. Ling, J. Liu, X. Cai, X. Zhou, X. Tang, B. Liang, Y. Chen, and H. Chen, Biomaterials 128, 84 (2017).CrossRefPubMedGoogle Scholar
  32. 32.
    B. Vitali, A. Abruzzo, C. Parolin, R. A. Ñ. Palomino, F. Dalena, F. Bigucci, T. Cerchiara, and B. Luppi, Carbohydr. Polym. 136, 1161 (2016).CrossRefPubMedGoogle Scholar
  33. 33.
    G. T. Gold, D. M. Varma, D. Harbottle, M. S. Gupta, S. S. Stalling, P. J. Taub, and S. B. Nicoll, J. Biomed. Mater. Res., Part A 102, 4536 (2014).Google Scholar
  34. 34.
    Y. B. Lee, S. M. Park, E. J. Song, J.-G. Park, K.-O. Cho, J. W. Kim, and D. S. Yu, J. Cosmet. Laser Ther. 16, 191 (2014).CrossRefPubMedGoogle Scholar
  35. 35.
    Y. B. Lee, E. J. Song, S. S. Kim, J. W. Kim, and D. S. Yu, J. Cosmet. Laser Ther. 16, 185 (2014).CrossRefPubMedGoogle Scholar
  36. 36.
    A. F. Khan, A. Afzal, A. A. Chaudhary, M. Saleem, L. Shahzadi, A. Jamal, M. Yar, and A. Habib, Sci. Adv. Mater. 7, 1177 (2015).CrossRefGoogle Scholar
  37. 37.
    L. Ali, M. Ahmad, and M. Usman, Cell. Chem. Technol. 49, 143 (2015).Google Scholar
  38. 38.
    M. Bagheri, S. Shateri, H. Niknejad, and A. A. Entezami, J. Polym. Res. 21, 567 (2014).CrossRefGoogle Scholar
  39. 39.
    G. R. Mahdavinia, S. Ettehadi, M. Amini, and M. Sabzi, RSC Adv. 5, 44516 (2015).CrossRefGoogle Scholar
  40. 40.
    B. Singh, S. Maharjan, T. Jiang, S.-K. Kang, Y.-J. Choi, and C.-S. Cho, Biomaterials 59, 144 (2015).CrossRefPubMedGoogle Scholar
  41. 41.
    X. Cai, P. Mesquida, and S. Jones, Int. J. Pharm. 513, 302 (2016).CrossRefPubMedGoogle Scholar
  42. 42.
    J. L. Ford, in Hydrophilic Matrix Tablets for Oral Controlled Release, Ed. by P. Timmens, S. R. Pygall, and C. D. Melia (Springer, New York, 2014), pp. 17–51.Google Scholar
  43. 43.
    M. P. Tedesco, C. A. Monaco-Lourenço, and R. A. Carvalho, Mater. Sci. Eng., C 69, 668 (2016).CrossRefGoogle Scholar
  44. 44.
    C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet, G. Carle, C. Vignes-Colombeix, C. Chadjichristos, P. Galera, and G. Daculsi, Biomaterials 26, 6643 (2005).CrossRefPubMedGoogle Scholar
  45. 45.
    D. Zhao, X. Shi, T. Liu, X. Lu, G. Qiu, and K. J. Shea, Carbohydr. Polym. 151, 1006 (2016).CrossRefPubMedGoogle Scholar
  46. 46.
    A. Verma, J. Dubey, N. Verma, and A. Kumar Nayak, Curr. Drug Delivery 14, 83 (2017).CrossRefGoogle Scholar
  47. 47.
    R. Patadia, C. Vora, K. Mittal, and R. Mashru, Pharm. Dev. Technol. 21, 794 (2016).CrossRefPubMedGoogle Scholar
  48. 48.
    J. Zhang, W. Yang, A. Q. Vo, X. Feng, X. Ye, D. W. Kim, and M. A. Repka, Carbohydr. Polym. 177, 49 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    N. Kerdsakundee, W. Li, J. P. Martins, Z. Liu, F. Zhang, M. Kemell, A. Correia, Y. Ding, M. Airavaara, and J. Hirvonen, Adv. Healthcare Mater. 6 (20), (2017). doi 10.1002/adhm.201700629Google Scholar
  50. 50.
    S. P. Hoo, Q. L. Loh, Z. Yue, J. Fu, T. T. Tan, C. Choong, and P. P. Chan, J. Mater. Chem. B 1, 3107 (2013).CrossRefGoogle Scholar
  51. 51.
    A. Qi, S. P. Hoo, J. Friend, L. Yeo, Z. Yue, and P. P. Chan, Adv. Healthcare Mater. 3, 543 (2014).CrossRefGoogle Scholar
  52. 52.
    A. Gencturk, E. Kahraman, S. Güngör, G. Özhan, Y. Özsoy, and A. Sarac, Artif. Cells, Nanomed., Biotechnol. 45, 655 (2017).CrossRefGoogle Scholar
  53. 53.
    A.-F. Metaxa, E. K. Efthimiadou, N. Boukos, E. A. Fragogeorgi, G. Loudos, and G. Kordas, J. Colloid Interface Sci. 435, 171 (2014).CrossRefPubMedGoogle Scholar
  54. 54.
    N. M. Reis, Z. K. Liu, C. M. Reis, and M. R. Mackley, Cryst. Growth Des. 14, 3191 (2014).CrossRefGoogle Scholar
  55. 55.
    Z. H. Al-Saedi, R. M. Alzhrani, and S. H. Boddu, J. Ocul. Pharmacol. Ther. 32, 451 (2016).CrossRefPubMedGoogle Scholar
  56. 56.
    S. Hassanpour and M. Bagheri, J. Polym. Res. 24, 91 (2017).CrossRefGoogle Scholar
  57. 57.
    X. Qi, H. Chen, Y. Rui, F. Yang, N. Ma, and Z. Wu, Int. J. Pharm. 489, 210 (2015).CrossRefPubMedGoogle Scholar
  58. 58.
    A. Tanaka, T. Furubayashi, M. Tomisaki, M. Kawakami, S. Kimura, D. Inoue, K. Kusamori, H. Katsumi, T. Sakane, and A. Yamamoto, Eur. J. Pharm. Sci. 96, 284 (2017).CrossRefPubMedGoogle Scholar
  59. 59.
    G. Teti, V. Salvatore, S. Focaroli, S. Durante, A. Mazzotti, M. Dicarlo, M. Mattioli-Belmonte, and G. Orsini, Front. Physiol. 6, 297 (2015).PubMedPubMedCentralGoogle Scholar
  60. 60.
    C. Chen, H. Li, J. Pan, Z. Yan, Z. Yao, W. Fan, and C. Guo, Biotechnol. Lett. 37, 457 (2015).CrossRefPubMedGoogle Scholar
  61. 61.
    S. Vimalraj, S. Saravanan, M. Vairamani, C. Gopalakrishnan, T. Sastry, and N. Selvamurugan, Int. J. Biol. Macromol. 93, 1457 (2016).CrossRefPubMedGoogle Scholar
  62. 62.
    B. Gaihre and A. C. Jayasuriya, Mater. Sci. Eng., C 69, 733 (2016).CrossRefGoogle Scholar
  63. 63.
    S.-H. Song, Y.-P. Yun, H.-J. Kim, K. Park, S. E. Kim, and H.-R. Song, BioMed Res. Int. 2014, 230152 (2014).PubMedPubMedCentralGoogle Scholar
  64. 64.
    Y. Ke, G. Liu, J. Wang, W. Xue, C. Du, and G. Wu, eXPRESS Polym. Lett. 8, 841 (2014).CrossRefGoogle Scholar
  65. 65.
    I. K. Ko, K. Kato, and H. Iwata, J. Biomater. Sci., Polym. Ed. 16, 1277 (2005).CrossRefGoogle Scholar
  66. 66.
    A. Agenor, L. Dvoracek, A. Leu, D. A. Hunter, P. Newton, Y. Yan, P. J. Johnson, S. E. Mackinnon, A. M. Moore, and M. D. Wood, J. Biomed. Mater. Res., Part B 105, 568 (2017).CrossRefGoogle Scholar
  67. 67.
    H. Liang, Q. Huang, B. Zhou, L. He, L. Lin, Y. An, Y. Li, S. Liu, Y. Chen, and B. Li, J. Mater. Chem. B 3, 3242 (2015).CrossRefGoogle Scholar
  68. 68.
    R. Elumalai, S. Patil, N. Maliyakkal, A. Rangarajan, P. Kondaiah, and A. M. Raichur, Nanomedicine (N. Y., NY, U. S.) 11, 969 (2015).Google Scholar
  69. 69.
    B. Mandal, D. Das, A. P. Rameshbabu, S. Dhara, and S. Pal, RSC Adv. 6, 19605 (2016).CrossRefGoogle Scholar
  70. 70.
    J. Liuyun, L. Yubao, Z. Li, and L. Jianguo, J. Mater. Sci.: Mater. Med. 19, 981 (2008).Google Scholar
  71. 71.
    D. Pasqui, P. Torricelli, M. Cagna, M. Fini, and R. Barbucci, J. Biomed. Mater. Res., Part A 102, 1568 (2014).CrossRefGoogle Scholar
  72. 72.
    J. Liuyun, L. Yubao, and X. Chengdong, J. Biomed. Sci. 16, 65 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    L. He, H. Liang, L. Lin, B. R. Shah, Y. Li, Y. Chen, and B. Li, Colloids Surf., B 126, 288 (2015).CrossRefGoogle Scholar
  74. 74.
    T. Agarwal, S. G. H. Narayana, K. Pal, K. Pramanik, S. Giri, and I. Banerjee, Int. J. Biol. Macromol. 75, 409 (2015).CrossRefPubMedGoogle Scholar
  75. 75.
    A. Salama, M. El-Sakhawy, and S. Kamel, Int. J. Biol. Macromol. 93, 1647 (2016).CrossRefPubMedGoogle Scholar
  76. 76.
    F. Laffleur and A. Messirek, Ther. Delivery 7, 63 (2016).CrossRefGoogle Scholar
  77. 77.
    G. D. Winter, Nature 193, 293 (1962).CrossRefPubMedGoogle Scholar
  78. 78.
    C. O. Agubata, C. Okereke, I. T. Nzekwe, R. I. Onoja, and N. C. Obitte, Eur. J. Pharm. Sci. 89, 1 (2016).CrossRefPubMedGoogle Scholar
  79. 79.
    D. Prabu, A. F. Majdalawieh, I. A. Abu-Yousef, K. Inbasekaran, T. Balasubramaniam, N. Nallaperumal, and C. J. Gunasekar, Int. J. Pharm. Invest. 6, 86 (2016).CrossRefGoogle Scholar
  80. 80.
    A. Ogawa, S. Nakayama, M. Uehara, Y. Mori, M. Takahashi, T. Aiba, and Y. Kurosaki, Int. J. Pharm. 477, 546 (2014).CrossRefPubMedGoogle Scholar
  81. 81.
    R. Rakhshaei and H. Namazi, Mater. Sci. Eng., C 73, 456 (2017).CrossRefGoogle Scholar
  82. 82.
    J.-S. Park, S.-J. An, S.-I. Jeong, H.-J. Gwon, Y.-M. Lim, and Y.-C. Nho, Polymers 9, 248 (2017).CrossRefGoogle Scholar
  83. 83.
    S.-F. Ng and N. Jumaat, Eur. J. Pharm. Sci. 51, 173 (2014).CrossRefPubMedGoogle Scholar
  84. 84.
    V. Simeonova, T. Angelova, I. Sablyova, N. Rangelova, and N. Georgieva, in Scientific Works of University of Food Technologies (UFT Academic Publishing House, Plovdiv, 2016), Vol. LXIII, pp. 193–198.Google Scholar
  85. 85.
    M. Yadollahi, I. Gholamali, H. Namazi, and M. Aghazadeh, Int. J. Biol. Macromol. 74, 136 (2015).CrossRefPubMedGoogle Scholar
  86. 86.
    S. Kondaveeti, T. C. Damato, A. M. Carmona-Ribeiro, M. R. Sierakowski, and D. F. S. Petri, Carbohydr. Polym. 165, 285 (2017).CrossRefPubMedGoogle Scholar
  87. 87.
    W. Lee and J. Park, Sci. Rep. 6, 7352 (2016).Google Scholar
  88. 88.
    S. Thirumala, J. M. Gimble, and R. V. Devireddy, Cells 2, 460 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    N. Contessi, L. Altomare, A. Filipponi, and S. Farè, Mater. Lett. 207, 153 (2017).CrossRefGoogle Scholar
  90. 90.
    L. Altomare, A. Cochis, A. Carletta, L. Rimondini, and S. Farè, J. Mater. Sci.: Mater. Med. 27, 95 (2016).Google Scholar
  91. 91.
    F. Zhuo, X. Liu, Q. Gao, Y. Wang, K. Hu, and Q. Cai, Mater. Sci. Eng., C 81, 1 (2017).CrossRefGoogle Scholar
  92. 92.
    C. Payne, E. B. Dolan, J. O’Sullivan, S.-A. Cryan, and H. M. Kelly, Drug Delivery Transl. Res. 7, 132 (2017).CrossRefGoogle Scholar
  93. 93.
    B. H. Cipriano, S. J. Banik, R. Sharma, D. Rumore, W. Hwang, R. M. Briber, and S. R. Raghavan, Macromolecules 47, 4445 (2014).CrossRefGoogle Scholar
  94. 94.
    M. Zhang, Z. Cheng, T. Zhao, M. Liu, M. Hu, and J. Li, J. Agric. Food Chem. 62, 8867 (2014).CrossRefPubMedGoogle Scholar
  95. 95.
    J. Duan, X. Zhang, J. Jiang, C. Han, J. Yang, L. Liu, H. Lan, and D. Huang, J. Nanomater. 2014, 312696 (2014).CrossRefGoogle Scholar
  96. 96.
    C. Spagnol, F. H. Rodrigues, A. G. Neto, A. G. Pereira, A. R. Fajardo, E. Radovanovic, A. F. Rubira, and E. C. Muniz, Eur. Polym. J. 48, 454 (2012).CrossRefGoogle Scholar
  97. 97.
    X.-W. Peng, J.-L. Ren, L.-X. Zhong, F. Peng, and R.-C. Sun, J. Agric. Food Chem. 59, 8208 (2011).CrossRefPubMedGoogle Scholar
  98. 98.
    J. Liu, Q. Li, Y. Su, Q. Yue, B. Gao, and R. Wang, Carbohydr. Polym. 94, 539 (2013).CrossRefPubMedGoogle Scholar
  99. 99.
    J.-S. Park, J. Kuang, Y.-M. Lim, H.-J. Gwon, and Y.-C. Nho, J. Nanosci. Nanotechnol. 12, 743 (2012).CrossRefPubMedGoogle Scholar
  100. 100.
    A. A. Al-Kahtani and B. Sherigara, Carbohydr. Polym. 104, 151 (2014).CrossRefPubMedGoogle Scholar
  101. 101.
    J. Yang, C.-R. Han, X.-M. Zhang, F. Xu, and R.-C. Sun, Macromolecules 47, 4077 (2014).CrossRefGoogle Scholar
  102. 102.
    W. Zhang, Y. Zhang, and Q. Li, High Voltage Eng. 41, 523 (2015).Google Scholar
  103. 103.
    Y. Bao, J. Ma, and N. Li, Carbohydr. Polym. 84, 76 (2011).CrossRefGoogle Scholar
  104. 104.
    C. Chang, B. Duan, J. Cai, and L. Zhang, Eur. Polym. J. 46, 92 (2010).CrossRefGoogle Scholar
  105. 105.
    Y. Baimark and Y. Srisuwan, Int. J. Polym. Sci. 2013, 761870 (2013).CrossRefGoogle Scholar
  106. 106.
    C. Liu, N. Wei, S. Wang, and Y. Xu, Carbohydr. Polym. 78, 1 (2009).CrossRefGoogle Scholar
  107. 107.
    M. Frediani, G. Giachi, L. Rosi, and P. Frediani, in Microwave Heating, Ed. by U. Chandra (IntechOpen, London, 2011).Google Scholar
  108. 108.
    J. Jovanovic and B. Adnadjevic, J. Appl. Polym. Sci. 116, 55 (2010).CrossRefGoogle Scholar
  109. 109.
    M. Pandey, N. Mohamad, and M. C. I. M. Amin, Mol. Pharmaceutics 11, 3596 (2014).CrossRefGoogle Scholar
  110. 110.
    H. Feng, J. Li, and L. Wang, BioResources 5, 1484 (2010).Google Scholar
  111. 111.
    Z. Wan, Z. Xiong, H. Ren, Y. Huang, H. Liu, H. Xiong, Y. Wu, and J. Han, Carbohydr. Polym. 83, 264 (2011).CrossRefGoogle Scholar
  112. 112.
    Y. Guan, J. Bian, F. Peng, X.-M. Zhang, and R.-C. Sun, Carbohydr. Polym. 101, 272 (2014).CrossRefPubMedGoogle Scholar
  113. 113.
    V. Stoyneva, D. Momekova, B. Kostova, and P. Petrov, Carbohydr. Polym. 99, 825 (2014).CrossRefPubMedGoogle Scholar
  114. 114.
    N. Mohamad, M. C. I. M. Amin, M. Pandey, N. Ahmad, and N. F. Rajab, Carbohydr. Polym. 114, 312 (2014).CrossRefPubMedGoogle Scholar
  115. 115.
    X. Zhang, Y. Wang, C. Lu, and W. Zhang, Carbohydr. Polym. 114, 166 (2014).CrossRefPubMedGoogle Scholar
  116. 116.
    M. He, Y. Zhao, J. Duan, Z. Wang, Y. Chen, and L. Zhang, ACS Appl. Mater. Interfaces 6, 1872 (2014).CrossRefPubMedGoogle Scholar
  117. 117.
    H. Kono and S. Fujita, Carbohydr. Polym. 87, 2582 (2012).CrossRefGoogle Scholar
  118. 118.
    Y. H. Bae, T. Okano, and S. W. Kim, Pharm. Res. 8, 531 (1991).CrossRefPubMedGoogle Scholar
  119. 119.
    T. C. Nichols, T. H. Fischer, E. N. Deliargyris, and A. S. Baldwin, Jr., Ann. Periodontol. 6, 20 (2001).CrossRefGoogle Scholar
  120. 120.
    L. Brannon-Peppas and N. A. Peppas, Biomaterials 11, 635 (1990).CrossRefPubMedGoogle Scholar
  121. 121.
    A. Pourjavadi and S. Barzegar, Starch-Stärke 61, 173 (2009).CrossRefGoogle Scholar
  122. 122.
    P. J. Flory, J. Chem. Phys. 10, 51 (1942).CrossRefGoogle Scholar
  123. 123.
    H. Eyni, S. Ghorbani, R. Shirazi, L. P. Salari Asl, S. Beiranvand, and M. Soleimani, J. Biomater. Appl. 32, 373 (2017).CrossRefPubMedGoogle Scholar
  124. 124.
    M. N. Nosar, M. Salehi, S. Ghorbani, S. P. Beiranvand, A. Goodarzi, and M. Azami, Cellulose 23, 3239 (2016).CrossRefGoogle Scholar
  125. 125.
    S. Ghorbani, H. Eyni, T. Tiraihi, L. S. Asl, M. Soleimani, A. Atashi, S. P. Beiranvand, and M. E. Warkiani, Int. J. Polym. Mater. Polym. Biomater. (in press). doi 10.1080/00914037.2017.1393681Google Scholar
  126. 126.
    N. H. Hazrin-Chong and M. Manefield, J. Microbiol. Methods 90, 96 (2012).CrossRefPubMedGoogle Scholar
  127. 127.
    M. Shibayama, Soft Matter 8, 8030 (2012).CrossRefGoogle Scholar
  128. 128.
    F. Brandl, F. Sommer, and A. Goepferich, Biomaterials 28, 134 (2007).CrossRefPubMedGoogle Scholar
  129. 129.
    K. S. Anseth, C. N. Bowman, and L. Brannon-Peppas, Biomaterials 17, 1647 (1996).CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    N. Peng, Y. Wang, Q. Ye, L. Liang, Y. An, Q. Li, and C. Chang, Carbohydr. Polym. 137, 59 (2016).CrossRefPubMedGoogle Scholar
  131. 131.
    T. Yoshimura, K. Matsuo, and R. Fujioka, J. Appl. Polym. Sci. 99, 3251 (2006).CrossRefGoogle Scholar
  132. 132.
    H. Eyni, S. Ghorbani, R. Shirazi, L. P. Salari Asl, S. Beiranvand, and M. Soleimani, J. Biomater. Appl. 32, 373 (2017).CrossRefPubMedGoogle Scholar
  133. 133.
    S. Ghorbani, T. Tiraihi, and M. Soleimani, J. Biomater. Appl. 32, 702 (2017).CrossRefPubMedGoogle Scholar
  134. 134.
    M. Shibayama, Polym. J. 43, 18 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Sadegh Ghorbani
    • 1
  • Hossein Eyni
    • 1
  • Sajad Razavi Bazaz
    • 2
  • Hojjatollah Nazari
    • 3
  • Leila Salari Asl
    • 1
  • Hamid Zaferani
    • 4
  • Vali Kiani
    • 5
  • Ali Abouei Mehrizi
    • 2
  • Masoud Soleimani
    • 6
    Email author
  1. 1.Department of Anatomical Sciences, School of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Life Sciences Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  3. 3.Stem Cell Technology CenterTehranIran
  4. 4.School of Medicine, Tehran Medical Sciences BranchTehran Islamic Azad University (IAUPS)TehranIran
  5. 5.Islamic Azad University (IAUPS)TehranIran
  6. 6.Department of Hematology, School of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations