Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 734–741 | Cite as

Through Permeability of Polyvinylidene Fluoride Piezoactive Porous Films

  • G. K. ElyashevichEmail author
  • I. S. Kuryndin
  • V. K. Lavrentyev
  • I. Yu. Dmitriev
Structure and Properties

Abstract

Polyvinylidene f luoride porous films containing through channels have been prepared for the first time. The films have been obtained via melt extrusion followed by annealing, uniaxial extension, and thermal fixation. Uniaxial extension has been carried out in two stages (“cold” and “hot” drawing) at room and elevated temperature, respectively. The effect of orientation efforts during formation of the porous structure of films on the overall porosity, permeability for liquids, the content of piezoactive β- phase in the crystalline part of sample, and piezo modulus d31 has been studied. The formation of through channels occurs via a percolation mechanism at the overall porosity of 23%. Under uniaxial extension of films, the pore formation competes with the polymorphic α → β transition. The conditions of porous film preparation allowing one to attain the maximum through permeability and piezo modulus values have been determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Khayet, C. Y. Feng, K. C. Khulbe, and T. Matsuura, Polymer 43, 3879 (2002).CrossRefGoogle Scholar
  2. 2.
    K. H. Oshima, T. T. Evaws-Strickfaden, A. K. Highsmith, and E. W. Ades, Biologicals 24, 137 (1996).CrossRefGoogle Scholar
  3. 3.
    G. Zukowska, M. Rogowska, E. Weczkowska, and W. Wieczorek, Solid State Ionics 119, 289 (1999).CrossRefGoogle Scholar
  4. 4.
    W. H. Seol, Y. M. Lee, and J. K. J. Park, Power Sources 163, 247 (2006).CrossRefGoogle Scholar
  5. 5.
    J. Kong and K. J. Li, J. Appl. Polym. Sci. 81, 1643 (2001).CrossRefGoogle Scholar
  6. 6.
    T. Masakazu, Y. Hitoshi, and I. Koubc, US Patent No. 6299773 (2001).Google Scholar
  7. 7.
    D. Wang, K. Li, and W. K. Teo, J. Membr. Sci. 163, 211 (1999).CrossRefGoogle Scholar
  8. 8.
    M. Cheryan, Ultrafiltration and Microfiltration Handbook (CRC Press, Boca Raton, 1998).CrossRefGoogle Scholar
  9. 9.
    M. Takamura and H. Yoshida, US Patent No. 6299773 (1999).Google Scholar
  10. 10.
    I. Yu. Dmitriev, V. Bukošek, V. K. Lavrentyev, and G. K. Elyashevich, Acta Chim. Slov. 54, 784 (2007).Google Scholar
  11. 11.
    C. Lei, B. Hu, R. Xu, Q. Cai, and W. Shi, J. Appl. Polym. Sci. 131, 400077 (2014).Google Scholar
  12. 12.
    F. Sadeghi, S. H. Tabatabaei, A. Ajji, and P. J. Carreau, J. Polym. Sci., Polym. Phys. Ed. 47, 1219 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Salimi and A. A. Yousefi, Polym. Test. 22, 699 (2003).CrossRefGoogle Scholar
  14. 14.
    B. Hu, Q. Cai, R. Xu, H. Mo, C. Chen, F. Zhang, and C. Lei, J. Plast. Film Sheeting 31, 269 (2015).CrossRefGoogle Scholar
  15. 15.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).Google Scholar
  16. 16.
    G. K. Elyashevich, E. Yu. Rozova, and E. A. Karpov, RF Patent No. 2140936 (1997).Google Scholar
  17. 17.
    G. K. Elyashevich, A. G. Kozlov, and E. Yu. Rozova, Vysokomol. Soedin., Ser. A 40 (6), 956 (1998).Google Scholar
  18. 18.
    I. S. Kuryndin, V. K. Lavrentyev, V. Bukošek, and G. K. Elyashevich, Polym. Sci., Ser. A 57 (6), 717 (2015).CrossRefGoogle Scholar
  19. 19.
    G. K. Elyashevich, D. V. Novikov, I. S. Kuryndin, A. Jelen, and V. Bukošek, Acta Chim. Slov. 64, 980 (2017).CrossRefGoogle Scholar
  20. 20.
    I. Yu. Dmitriev, V. K. Lavrentyev, and G. K. Elyashevich, Polym. Sci., Ser. A 48 (3), 272 (2006).CrossRefGoogle Scholar
  21. 21.
    B. Hu, C. Lei, R. Xu, W. Shi, Q. Cai, H. Mo, and C. Chen, J. Plast. Film Sheeting 30, 300 (2014).CrossRefGoogle Scholar
  22. 22.
    F. Liu, N. A. Hashim, Yu. Liu, M. R. M. Abed, and K. Li, J. Membr. Sci. 375, 1 (2011).CrossRefGoogle Scholar
  23. 23.
    K. S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct. 23, 033001 (2014).CrossRefGoogle Scholar
  24. 24.
    C.-H. Du, Y.-Y. Xu, and B.-K. Zhu, J. Appl. Polym. Sci. 106, 1793 (2007).CrossRefGoogle Scholar
  25. 25.
    V. V. Kochervinskii, Russ. Chem. Rev. 65, 865 (1996).CrossRefGoogle Scholar
  26. 26.
    V. V. Kochervinskii, N. V. Kozlova, A. Y. Khnykov, M. A. Shcherbina, S. N. Sulyanov, and K. A. Dembo, J. Appl. Polym. Sci. 116, 695 (2010).Google Scholar
  27. 27.
    I. Yu. Dmitriev, I. S. Kuryndin, V. K. Lavrentyev, and G. K. Elyashevich, Phys. Solid State 59, 1041 (2017).CrossRefGoogle Scholar
  28. 28.
    I. Yu. Dmitriev, I. S. Kuryndin, and G. K. Elyashevich, RF Patent No. 2635804 (2017).Google Scholar
  29. 29.
    G. A. Lushcheikin, Polymer Piezoelectrics (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  30. 30.
    M. T. Darestani, H. G. L. Coster, T. C. Chilcott, S. Fleming, V. Nagarajan, and H. An, J. Membr. Sci. 434, 184 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. K. Elyashevich
    • 1
    Email author
  • I. S. Kuryndin
    • 1
  • V. K. Lavrentyev
    • 1
  • I. Yu. Dmitriev
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations