Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 788–795 | Cite as

Properties of Composite Films of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose with Poly-N-methyl-N-vinylacetamide

  • A. M. BochekEmail author
  • I. L. Shevchuk
  • I. I. Gavrilova
  • M. F. Lebedeva
  • V. K. Lavrent’ev
  • E. F. Panarin
Polymer Blends

Abstract

Composite films have been obtained from mixtures of hydroxyethyl cellulose and hydroxypropyl cellulose aqueous solutions with poly-N-methyl-N-vinylacetamide. The structural organization of composite films has been studied by dynamic mechanical analysis and X-ray diffraction analysis, and the composition ranges where cellulose ethers are compatible with synthetic polyamide and form mixed structural formations have been determined. The values of the solubility parameter and the surface energy of polymers have been compared with their compatibility in the solid state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Simkovic, Carbohydr. Polym. 9 (2), 697 (2013).CrossRefGoogle Scholar
  2. 2.
    R. K. Shukla and A. Tiwari, Carbohydr. Polym. 88 (2), 399 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Liu, S. Willfor, and C. Xu, Bioact. Carbohydr. Diet. Fibre 5 (1), 31 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Chang and L. Zhang, Carbohydr. Polym. 84 (1), 40 (2011).CrossRefGoogle Scholar
  5. 5.
    A. M. Bochek, Fibre Chem. 40 (3), 192 (2008).CrossRefGoogle Scholar
  6. 6.
    Yu. E. Kirsh, Poly-(N-Vinylpyrrolidone) and Other Poly(N-Vinylamides) (Nauka, Moscow, 1998) [in Russian].Google Scholar
  7. 7.
    E. F. Panarin, N. A. Lavrov, M. V. Solovskii, and L. I. Shal’nova, Polymers—carries of bioactive substances (Professiya, St. Petersburg, 2014) [in Russian].Google Scholar
  8. 8.
    J.-K. Tzeng and S.-S. Hou, Macromolecules 41 (4), 1281 (2008).CrossRefGoogle Scholar
  9. 9.
    Polymer blends, Ed. by D. R. Paul and C. B. Bucknal (John Wiley & Sons, New York, 2000), Vol. 2.Google Scholar
  10. 10.
    X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, and Q. Zhang, Chem. Eng. J. 170 (2–3), 381 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Y. Yi, W. Lu, D. F. Farson, and L. J. Lee, Adv. Polym. Technol. 27 (4), 188 (2008).CrossRefGoogle Scholar
  12. 12.
    O. I. Bogdanova and S. N. Chvalun, Polym. Sci., Ser. A 58 (5), 629 (2016).CrossRefGoogle Scholar
  13. 13.
    G. Crini, Prog. Polym. Sci. 30 (1), 38 (2005).CrossRefGoogle Scholar
  14. 14.
    L. I. Kutsenko, Yu. G. Santuryan, E. B. Karetnikova, I. V. Gofman, A. M. Bochek, and E. F. Panarin, Russ. J. Appl. Chem. 80 (5), 771 (2007).CrossRefGoogle Scholar
  15. 15.
    L. I. Kutsenko, Yu. G. Santuryan, L. M. Kalyuzhnaya, I. V. Gofman, I. V. Abalov, A. M. Bochek, and E. F. Panarin, Russ. J. Appl. Chem. 86, 558 (2013).CrossRefGoogle Scholar
  16. 16.
    A. M. Bochek, Sh. Nishiyama, N. M. Zabivalova, I.I. Gavrilova, N. A. Nesterova, E. F. Panarin, G. M. Poltoratskii, I. V. Gofman, V. E. Yudin, V. E. Smirnova, I. V. Abalov, V. K. Lavrent’ev, E. N. Vlasova, and B. Z. Volchek, Polym. Sci., Ser. A 53 (5), 409 (2011).CrossRefGoogle Scholar
  17. 17.
    A. M. Bochek, N. M. Zabivalova, I. I. Gavrilova, I. V. Gofman, I. V. Abalov, E. N. Popova, V. E. Yudin, V. K. Lavrent’ev, and E. F. Panarin, Polym. Sci., Ser. A 56 (2), 158 (2014).CrossRefGoogle Scholar
  18. 18.
    A. M. Bochek, I. L. Shevchuk, I. I. Gavrilova, N. A. Nesterova, E. F. Panarin, V. E. Yudin, I. V. Gofman, I. V. Abalov, M. F. Lebedeva, L. M. Kalyuzhnaya, and V. K. Lavrent’ev, Polym. Sci., Ser. A 54 (9), 730 (2012).CrossRefGoogle Scholar
  19. 19.
    B. V. K. Naidu, M. Sairam, K. V. S. N. Raju, and T. M. Aminabhavi, Carbohydr. Polym. 61 (1), 52 (2005).CrossRefGoogle Scholar
  20. 20.
    K. S. V. K. Rao, B. V. K. Naidu, M. C. S. Subha, M. Sairam, N. N. Mallikarjuna, and T. M. Aminabahvi, Carbohydr. Polym. 66 (3), 345 (2006).CrossRefGoogle Scholar
  21. 21.
    K. Luo, J. Yin, O. V. Khutoryanskaya, and V. V. Khutoryanskiy, Macromol. Biosci. 8 (2), 184 (2008).CrossRefGoogle Scholar
  22. 22.
    M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, and R. Mishra, J. Mol. Pharm. Org. Process Res. 3 (2), 126 (2015).Google Scholar
  23. 23.
    V. Mutalik, L. S. Manjeshwar, A. Wali, M. Sairam, K. V. S. N. Raju, and T. M. Aminabhavi, Carbohydr. Polym. 65 (1), 9 (2006).CrossRefGoogle Scholar
  24. 24.
    H. Suto, M. Kudo, and M. Karasawa, J. Appl. Polym. Sci. 31 (5), 1327 (1986).CrossRefGoogle Scholar
  25. 25.
    S. Yano, Polymer 35 (25), 5565 (1994).CrossRefGoogle Scholar
  26. 26.
    T. G. Rials and W. G. Glasser, J. Appl. Polym. Sci. 36 (4), 749 (1988).CrossRefGoogle Scholar
  27. 27.
    A. Gómez-Carracedo, C. Alvarez-Lorenzo, J. L. Gómez-Amoza, and A. Concheiro, J. Therm. Anal. Calorim. 73 (2), 587 (2003).CrossRefGoogle Scholar
  28. 28.
    I. E. Raschip, C. Vasile, and D. Macocinschi, Polym. Int. 58 (1), 4 (2009).CrossRefGoogle Scholar
  29. 29.
    E. Marsano, C. Costa, and E. Bianchi, Polymer 43 (3), 1021 (2002).CrossRefGoogle Scholar
  30. 30.
    J. Yin, K. Luo, X. Chen, and V. V. Khutoryanskiy, Carbohydr. Polym. 63 (2), 238 (2006).CrossRefGoogle Scholar
  31. 31.
    N. Yanashida and M. Matsuo, Polymer 33 (5), 996 (1992).CrossRefGoogle Scholar
  32. 32.
    A. M. Bochek, I. L. Shevchuk, I. I. Gavrilova, I. V. Gofman, E. F. Panarin, Izv. Vyssh. Uchebn. Zaved., Tekhnol. Legkoi Prom-sti, No. 3, 31 (2016).Google Scholar
  33. 33.
    D. W. van Krevelen and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Rrediction from Additive Group Contributions (Elsevier, Amsterdam, 2009).CrossRefGoogle Scholar
  34. 34.
    A. M. Bochek and G. A. Petropavlovsky, Cellul. Chem. Technol. 27 (6), 587 (1993).Google Scholar
  35. 35.
    A. M. Bochek, Russ. J. Appl. Chem. 76 (11), 1711 (2003).CrossRefGoogle Scholar
  36. 36.
    T. Kitak, A. Dumicic, O. Planinsek, R. Sibanc, and S. Srcic, Molecules 20 (12), 21549 (2015).CrossRefGoogle Scholar
  37. 37.
    P. Choi, T. A. Kavassalis, and A. Rudin, Ind. Eng. Chem. Res. 33 (12), 3154 (1994).CrossRefGoogle Scholar
  38. 38.
    P. Sakellariou, R. C. Rowe, and E. F. T. White, Int. J. Pharm. 31 (1–2), 175 (1986).CrossRefGoogle Scholar
  39. 39.
    A. A. Askadskii, Physical Properties of Polymers, Prediction and Control (Gordon and Breach Publ., Amsterdam, 1996).Google Scholar
  40. 40.
    A. A. Askadskii, Polym. Sci., Ser. A 41 (1), 80 (1999).Google Scholar
  41. 41.
    A. F. Miller and A. M. Donald, Langmuir 18 (26), 10155 (2002).CrossRefGoogle Scholar
  42. 42.
    D. F. Steele, R. C. Moreton, J. N. Staniforth, P. M. Young, M. J. Tobyn, and S. Edge, AAPS J. 10 (3), 494 (2008).CrossRefGoogle Scholar
  43. 43.
    E. Papirer, E. Brendle, H. Balard, and C. Vergelati, J. Adhes. Sci. Technol. 14 (3), 321 (2000).CrossRefGoogle Scholar
  44. 44.
    N. Rjiba, M. Nardin, J.-Y. Drean, and R. Frydrych, J. Polym. Res. 17 (1), 25 (2010).CrossRefGoogle Scholar
  45. 45.
    P. L. Nasatto, F. Pignon, J. L. M. Silveira, M. E. R. Duarte, M. D. Noseda, and M. Rinaudo, Polymers 6 (12), 2961 (2014).CrossRefGoogle Scholar
  46. 46.
    P. L. Nasatto, F. Pignon, J. L. M. Silveira, M. E. R. Duarte, M. D. Noseda, and M. Rinaudo, Polymers 7 (5), 777 (2015).CrossRefGoogle Scholar
  47. 47.
    R. Y. Z. Hu, A. T. A. Wang, and J. P. Hartnett, Exp. Therm. Fluid Sci. 4 (6), 723 (1991).CrossRefGoogle Scholar
  48. 48.
    S. A. Chang and D. Gray, J. Colloid Interface Sci. 67 (2), 255 (1978).CrossRefGoogle Scholar
  49. 49.
    G. M. Pavlov, O. V. Okatova, A. V. Mikhailova, N. N. Ul’yanova, I. I. Gavrilova, and E. F. Panarin, Polym. Sci., Ser. C 52 (1), 62 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Bochek
    • 1
    Email author
  • I. L. Shevchuk
    • 1
  • I. I. Gavrilova
    • 1
  • M. F. Lebedeva
    • 1
  • V. K. Lavrent’ev
    • 1
  • E. F. Panarin
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations