Polymer Science, Series A

, Volume 60, Issue 5, pp 553–576 | Cite as

Modern Methods for Studying Polymer Complexes in Aqueous and Organic Solutions

  • V. V. KhutoryanskiyEmail author
  • R. Yu. Smyslov
  • A. V. Yakimansky


This review summarizes published data concerning modern physicochemical methods used to study complexation processes of polymers in solutions. Some of them—dynamic light scattering, nanoparticle tracking analysis, transmission electron microscopy, cryotransmission electron microscopy, atomic force microscopy, small-angle neutron scattering, analytical-velocity sedimentation, and luminescence methods—make it possible to gain insight into the structure of polymer complexes, while the other methods, such as isothermal titration calorimetry and surface plasmon resonance, provide an opportunity to assess the intensity of specific interactions between complex components.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Tsuchida and K. Abe, Adv. Polym. Sci. 45, 1 (1982).CrossRefGoogle Scholar
  2. 2.
    A. B. Zezin and V. A. Kabanov, Russ. Chem. Rev. 51, 833 (1982).CrossRefGoogle Scholar
  3. 3.
    V. A. Kabanov, Russ. Chem. Rev. 74, 3 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Philipp, H. Dautzenberg, K. J. Linow, J. Kotz, and W. Dawydoff, Prog. Polym. Sci. 14, 91 (1989).CrossRefGoogle Scholar
  5. 5.
    D. V. Pergushov, O. V. Borisov, A. B. Zezin, and A. H. E. Muller, Adv. Polym. Sci. 241, 131 (2011).CrossRefGoogle Scholar
  6. 6.
    V. A. Izumrudov, Russ. Chem. Rev. 77, 401 (2008).CrossRefGoogle Scholar
  7. 7.
    A. V. Kabanov and V. A. Kabanov, Vysokomol. Soedin., Ser. A 36 (2), 198 (1994).Google Scholar
  8. 8.
    R. I. Moustafine, A. R. Salachova, E. S. Frolova, V.A. Kemenova, and G. Mooter, Drug Dev. Ind. Pharm. 35, 1439 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    R. I. Moustafine, A. Y. Sitenkov, A. V. Bukhovets, S. F. Nasibullin, B. Appeltans, T. V. Kabanova, V. V. Khutoryanskiy, and G. Mooter, Int. J. Pharm. 524, 121 (2017).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Dalmoro, A. Y. Sitenkov, G. Lamberti, A. A. Barba, and R. I. Moustafine, J. Appl. Polym. Sci. 133, (2016). doi: 10.1002/app.42976Google Scholar
  11. 11.
    B. G. De Geest, G. B. Sukhorukov, and H. Mohwald, Expert Opin. Drug. Delivery 6, 613 (2009).CrossRefGoogle Scholar
  12. 12.
    V. A. Kabanov and I. M. Papisov, Vysokomol. Soedin., Ser. A 21 (2), 243 (1979).Google Scholar
  13. 13.
    E. A. Bekturov and L. A. Bimendina, Adv. Polym. Sci. 41, 99 (1981).CrossRefGoogle Scholar
  14. 14.
    V. V. Khutoryanskiy and G. Staikos, Hydrogen-Bonded Interpolymer Complexes: Formation, Structure and Applications (World Scientific, Hackensack; Singapore, 2009).CrossRefGoogle Scholar
  15. 15.
    V. V. Khutoryanskiy, Int. J. Pharm. 334, 15 (2007).CrossRefPubMedGoogle Scholar
  16. 16.
    J. Spevacek and B. Schneider, Adv. Colloid Int. 27, 81 (1987).CrossRefGoogle Scholar
  17. 17.
    E. V. Anufrieva, M. G. Krakovyak, T. N. Nekrasova, R. Yu. Smyslov, and V. B. Lushchik, Zh. Polim. Khim. 69, 999 (1996).Google Scholar
  18. 18.
    E. V. Anufrieva, M. G. Krakovyak, T. N. Nekrasova, and R. Yu. Smyslov, Vysokomol. Soedin., Ser. A 38 (2), 310 (1996).Google Scholar
  19. 19.
    L. Sun, A. Pitto-Barry, N. Kirby, T. L. Schiller, A.M. Sanchez, M. A. Dyson, J. Sloan, N. R. Wilson, R. K. O’Reilly, and A. P. Dove, Nat. Commun. 5, 1 (2014).Google Scholar
  20. 20.
    F. Pilate, A. Toncheva, P. Dubois, and J. M. Raquez, Eur. Polym. J. 80, 268 (2016).CrossRefGoogle Scholar
  21. 21.
    K. C. Tam and E. Wyn-Jones, Chem. Soc. Rev. 35, 693 (2006).CrossRefPubMedGoogle Scholar
  22. 22.
    K. B. Musabekov, B. A. Zhubanov, V. N. Izmailova, and B. D. Summ, Interfacial Layers of Polyelectrolytes: Synthetic Polymers (Nauka, Almaty, 1987) [in Russian].Google Scholar
  23. 23.
    A. A. Efimova, A. V. Sybachin, S. N. Chvalun, A. I. Kulebyakina, E. V. Kozlova, and A. A. Yaroslavov, Polym. Sci., Ser. B 57 (2), 140 (2015).CrossRefGoogle Scholar
  24. 24.
    E. Tsuchida and H. Nishide, Adv. Polym. Sci. 24, 1 (1977).CrossRefGoogle Scholar
  25. 25.
    E. A. Bekturov, L. A. Bimendina, and S. E. Kudaibergenov, Polymer Complexes and Catalysts (Nauka, Almaty, 1982) [in Russian].Google Scholar
  26. 26.
    V. V. Khutoryanskiy, P. Kujawa, Z. S. Nurkeeva, and J. M. Rosiak, Macromol. Chem. Phys. 202, 1089 (2001).CrossRefGoogle Scholar
  27. 27.
    A. D. Pomogailo, Polymer Immobilized Metallocomplex Catalysts (Nauka, Moscow, 1988) [in Russian].Google Scholar
  28. 28.
    A. S. A. Aal, V. V. Khutoryanskiy, Z. S. Nurkeeva, and G. A. Mun, J. Mater. Chem. 12, 2692 (2002).CrossRefGoogle Scholar
  29. 29.
    I. D. Grishin, N. E. Kiseleva, A. V. Markin, I. T. Chizhevsky, and D. F. Grishin, Polym. Sci., Ser. B 57 (1), 1 (2015).CrossRefGoogle Scholar
  30. 30.
    R. Y. Smyslov, K. V. Ezdakova, G. P. Kopitsa, A. K. Khripunov, A. A. Tkachenko, B. Angelov, V. Pipich, N. K. Szekely, E. Latysheva, Y. O. Chetverikov, and V. Haramus, J. Phys.: Conf. Ser. 848, 012017 (2017).Google Scholar
  31. 31.
    E. V. Velichko, A. L. Buyanov, N. N. Saprykina, Y. O. Chetverikov, C. P. Duif, W. G. Bouwman, and R. Y. Smyslov, Eur. Polym. J. 88, 269 (2017).CrossRefGoogle Scholar
  32. 32.
    J. C. G. Bunzli, Coord. Chem. Rev. 293, 19 (2015).CrossRefGoogle Scholar
  33. 33.
    A. V. Yakimanskii, M. G. Krakovyak, M. Ya. Goikhman, R. Yu. Smyslov, I. V. Podeshvo, N. L. Loretsyan, T. N. Nekrasova, T. D. Anan’eva, and E. V. Anufrieva, Polym. Sci., Ser. A 52 (1), 34 (2010).CrossRefGoogle Scholar
  34. 34.
    A. V. Yakimanskii, M. Ya. Goikhman, I. V. Podeshvo, T. D. Anan’eva, T. N. Nekrasova, and R. Yu. Smyslov, Polym. Sci., Ser. A 54 (12), 921 (2012).CrossRefGoogle Scholar
  35. 35.
    V. A. Smirnov, O. E. Philippova, G. A. Sukhadolski, and A. R. Khokhlov, Macromolecules 31, 1162 (1998).CrossRefGoogle Scholar
  36. 36.
    Z. S. Nurkeeva, G. A. Mun, V. V. Khutoryanskiy, A. B. Bitekenova, and A. B. Dzhusupbekova, J. Biomater. Sci., Polym. Ed. 13, 759 (2002).CrossRefGoogle Scholar
  37. 37.
    Z. S. Nurkeeva, V. V. Khutoryanskiy, G. A. Mun, M. V. Sherbakova, A. T. Ivaschenko, and N. A. Aitkhozhina, Eur. J. Pharm. Biopharm. 57, 245 (2004).CrossRefPubMedGoogle Scholar
  38. 38.
    M. Oliva, I. Diez-Perez, P. Gorostiza, C. F. Lastra, I. Oliva, C. Caramella, and E. L. Marino, J. Pharm. Sci. 92, 77 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    W. R. Gombotz and S. F. Wee, Adv. Drug Delivery Rev. 31, 267 (1998).CrossRefGoogle Scholar
  40. 40.
    M. T. Cook, G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy, J. Controlled Release 162, 56 (2012).CrossRefGoogle Scholar
  41. 41.
    D. V. Pergushov, A. A. Zezin, A. B. Zezin, and A. H. E. Muller, Adv. Polym. Sci. 255, 173 (2014).CrossRefGoogle Scholar
  42. 42.
    Y. Chen, Y. Pang, J. L. Wu, Y. Su, J. Y. Liu, R. B. Wang, B. S. Zhu, Y. F. Yao, D. Y. Yan, X. Y. Zhu, and Q. Chen, Langmuir 26, 9011 (2010).CrossRefPubMedGoogle Scholar
  43. 43.
    E. A. Bekturov and R. E. Legkunets, Polymer Association with Small Molecules (Nauka, Almaty, 1983) [in Russian].Google Scholar
  44. 44.
    A. B. Zezin and V. B. Rogacheva, in Progress in Chemistry and Physics of Polymers (Nauka, Moscow, 1973) [in Russian].Google Scholar
  45. 45.
    E. A. Bekturov and L. A. Bimendina, Interpolymer Complexes (Nauka, Almaty, 1977) [in Russian].Google Scholar
  46. 46.
    V. E. Eskin, Light Scattering by Solutions of Polymers and Properties of Macromolecules (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  47. 47.
    V. E. Eskin, Phys.-Usp. 7, 270 (1964).Google Scholar
  48. 48.
  49. 49.
    B. H. Zimm, J. Chem. Phys. 16, 1093 (1948).CrossRefGoogle Scholar
  50. 50.
    I. K. Yudin, G. L. Nikolaenko, V. I. Kosov, V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Int. J. Thermophys. 18, 1237 (1997).CrossRefGoogle Scholar
  51. 51.
    B. J. Frisken, Appl. Opt. 40, 4087 (2001).CrossRefPubMedGoogle Scholar
  52. 52.
    B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover Publ., Mineola; New York, 2000).Google Scholar
  53. 53.
    I. D. Block and F. Scheffold, Rev. Sci. Instrum. 81, 1 (2010).CrossRefGoogle Scholar
  54. 54.
    E. A. Litmanovich, S. O. Zakharchenko, G. V. Stoychev, and A. B. Zezin, Polym. Sci., Ser. A 51 (6), 616 (2009).CrossRefGoogle Scholar
  55. 55.
    C. E. Ioan, T. Aberle, and W. Burchard, Macromolecules 32, 7444 (1999).CrossRefGoogle Scholar
  56. 56.
    D. E. Zhunuspayev, G. A. Mun, P. Hole, and V. V. Khutoryanskiy, Langmuir 24, 13742 (2008).CrossRefPubMedGoogle Scholar
  57. 57.
    D. V. Pergushov, I. A. Babin, F. A. Plamper, A. B. Zezin, and A. H. Muller, Langmuir 24, 6414 (2008).CrossRefPubMedGoogle Scholar
  58. 58.
    A. Usaitis, S. L. Maunu, and H. Tenhu, Eur. Polym. J. 33, 219 (1997).CrossRefGoogle Scholar
  59. 59.
    Malvern Panalytical. Cited 2018.
  60. 60.
    B. Carr and M. Wright, Nanoparticle Tracking Analysis. A Review of Applications and Usage 2010–2012 (NanoSight Ltd., Wiltshire, 2013).Google Scholar
  61. 61.
    E. A. Mun, C. Hannell, S. E. Rogers, P. Hole, A. C. Williams, and V. V. Khutoryanskiy, Langmuir 30, 308 (2014).CrossRefPubMedGoogle Scholar
  62. 62.
    M. Swanson Vethamuthu, P. L. Dubin, M. Almgren, and Y. J. Li, J. Colloid Interface Sci. 186, 414 (1997).CrossRefPubMedGoogle Scholar
  63. 63.
    L. Gardlund, L. Wagberg, and M. Norgren, J. Colloid Interface Sci. 312, 237 (2007).CrossRefPubMedGoogle Scholar
  64. 64.
    O. V. Khutoryanskaya, A. C. Williams, and V. V. Khutoryanskiy, Macromolecules 40, 7707 (2007).CrossRefGoogle Scholar
  65. 65.
    S. Golan and Y. Talmon, Langmuir 28, 1668 (2012).CrossRefPubMedGoogle Scholar
  66. 66.
    L. Aravindan, K. A. Bicknell, G. Brooks, V. V. Khutoryanskiy, and A. C. Williams, Int. J. Pharm. 378, 201 (2009).CrossRefPubMedGoogle Scholar
  67. 67.
    F. Schacher, E. Betthausen, A. Walther, H. Schmalz, D. V. Pergushov, and A. H. E. Muller, ACS Nano 3, 2095 (2009).CrossRefPubMedGoogle Scholar
  68. 68.
    N. I. Potaturkina-Nesterova, I. S. Nemova, and A. V. Dan’shina, No. 3, id 6348 (2012).Google Scholar
  69. 69.
    A. G. Schatzlein, B. H. Zinselmeyer, A. Elouzi, C. Dufes, Y. T. A. Chim, C. J. Roberts, M. C. Davies, A. Munro, A. I. Gray, and I. F. Uchegbu, J. Controlled Release 101, 247 (2005).CrossRefGoogle Scholar
  70. 70.
    Y. Y. Xu, O. V. Borisov, M. Ballauff, and A. H. E. Muller, Langmuir 26, 6919 (2010).CrossRefPubMedGoogle Scholar
  71. 71.
    F. Horkay and B. Hammouda, Colloid Polym. Sci. 286, 611 (2008).CrossRefGoogle Scholar
  72. 72.
    A. Radulescu, V. Pipich, H. Frielinghaus, and M. S. Appavou, J. Phys.: Conf. Ser. 351, 1 (2012).Google Scholar
  73. 73.
    NeutronScattering. Neutron Scattering Lectures of the JCNS Laboratory Course Held at ForschungszentrumJülich and the Research Reactor FRM II of TU Munich, Ed. by Th. Brückel, D. Richter, G. Roth, A. Wischnewski, and R. Zorn (ForschungszentrumJülich GmbH, Jülich, 2015), Vol. 15, Chaps. 2, 5.Google Scholar
  74. 74.
    G. Goerigk and Z. Varga, J. Appl. Crystallogr. 44, 337 (2011).CrossRefGoogle Scholar
  75. 75.
    Y. D. Zaroslov, V. I. Gordeliy, A. I. Kuklin, A.H. Islamov, O. E. Philippova, A. R. Khokhlov, and G. Wegner, Macromolecules 35, 4466 (2002).CrossRefGoogle Scholar
  76. 76.
    A. Radulescu, E. Kentzinger, J. Stellbrink, L. Dohmen, B. Alefeld, U. Rucker, M. Heiderich, D. Schwahn, T. Bruckel, and D. Richter, Neutron News 16, 18 (2005).CrossRefGoogle Scholar
  77. 77.
    G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).CrossRefGoogle Scholar
  78. 78.
  79. 79.
    W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 7, 96 (1974).CrossRefGoogle Scholar
  80. 80.
    B. Hammouda and D. F. R. Mildner, J. Appl. Crystallogr. 40, 250 (2007).CrossRefGoogle Scholar
  81. 81.
    S. K. Filippov, B. Verbraeken, P. V. Konarev, D. I. Svergun, B. Angelov, N. S. Vishnevetskaya, C. M. Papadakis, S. Rogers, A. Radulescu, T. Courtin, J. C. Martins, L. Starovoytova, M. Hruby, P. Stepanek, V. S. Kravchenko, I. I. Potemkin, and R. Hoogenboom, J. Phys. Chem. Lett. 8, 3800 (2017).CrossRefPubMedGoogle Scholar
  82. 82.
    M. Zeghal and L. Auvray, Europhys. Lett. 45, 482 (1999).CrossRefGoogle Scholar
  83. 83.
    J. Merta, V. M. Garamus, A. I. Kuklin, R. Willumeit, and P. Stenius, Langmuir 16, 10061 (2000).CrossRefGoogle Scholar
  84. 84.
    M. Sotiropoulou, J. Oberdisse, and G. Staikos, Macromolecules 39, 3065 (2006).CrossRefGoogle Scholar
  85. 85.
    A. Rajapaksha, C. B. Stanley, and B. A. Todd, Biophys. J. 108, 967 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    D. I. Svergun, S. Richard, M. H. J. Koch, Z. Sayers, S. Kuprin, and G. Zaccai, Proc. Natl. Acad. Sci. U. S. A. 95, 2267 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    O. A. Novoskoltseva, E. V. Chernikova, V. B. Rogacheva, and A. B. Zezin, Polym. Sci., Ser.B 57 (2), 132 (2015).CrossRefGoogle Scholar
  88. 88.
    V. A. Izumrudov, Russ. Chem. Rev. 77, 401 (2008).CrossRefGoogle Scholar
  89. 89.
    E. V. Anufrieva, E. F. Panarin, V. D. Pautov, G. V. Semisotnov, and M. V. Solovskii, Vysokomol. Soedin., Ser. A 19 (6), 1329 (1977).Google Scholar
  90. 90.
    E. V. Anufrieva, M. G. Krakovyak, T. N. Nekrasova, and R. Y. Smyslov, in Hydrogen Bonded Interpolymer Complexes: Formation, Structure and Application, Eds. by. V. V. Khutoryanskiy (World Sci. Publ. Co Inc., Singapore, 2009).Google Scholar
  91. 91.
    Yu. A. Vladimirov and G. E. Dobretsov, Fluorescent Probes in Biological Membrane Studies (Nauka, Moscow, 1980) [in Russian].Google Scholar
  92. 92.
    V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, Langmuir 20, 3785 (2004).CrossRefPubMedGoogle Scholar
  93. 93.
    Z. S. Nurkeeva, G. A. Mun, A. V. Dubolazov, and V. V. Khutoryanskiy, Macromol. Biosci 5, 424 (2005).CrossRefPubMedGoogle Scholar
  94. 94.
    A. V. Dubolazov, Z. S. Nurkeeva, G. A. Mun, and V. V. Khutoryanskiy, Biomacromolecules 7, 1637 (2006).CrossRefPubMedGoogle Scholar
  95. 95.
    Z. S. Nurkeeva, G. A. Mun, and V. V. Khutoryanskiy, Polym. Sci., Ser. B 43 (5–6), 148 (2001).Google Scholar
  96. 96.
    V. V. Khutoryanskiy, G. A. Mun, Z. S. Nurkeeva, and A. V. Dubolazov, Polym. Int. 53, 1382 (2004).CrossRefGoogle Scholar
  97. 97.
    D. V. Pergushov, E. V. Remizova, J. Feldthusen, A. B. Zezin, A. H. E. Muller, and V. A. Kabanov, J. Phys. Chem. B 107, 8093 (2003).CrossRefGoogle Scholar
  98. 98.
    E. V. Anufrieva and Y. Y. Gotlib, Adv. Polym. Sci. 40, 1 (1981).CrossRefGoogle Scholar
  99. 99.
    G. M. Barten’ev, Relaxation Phenomena in Polymers (Khimiya, Leningrad, 1972) [in Russian].Google Scholar
  100. 100.
    Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].Google Scholar
  101. 101.
    S. B. Grigor’ev and I. G. Mikhailov, in Modern Physical Methods of Polymer Investigation (Khimiya, Moscow, 1982), p. 185 [in Russian].Google Scholar
  102. 102.
    I. G. Mikhailov, E. B. Safarina, and N. M. Fedorova, Vestn. Leningr. Univ. 1, 55 (1972).Google Scholar
  103. 103.
    R. Ullman, J. Chem. Phys. 43, 3161 (1965).CrossRefGoogle Scholar
  104. 104.
    T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic Press, New York; London, 1971).Google Scholar
  105. 105.
    A. B. Ruban, Modern Methods in Biophysical Investigations (Vysshaya shkola, Moscow, 1988) [in Russian].Google Scholar
  106. 106.
    K.-J. Liu and J. E. Anderson, J. Macromol. Sci., Rev. Macromol. Chem. 5, 1 (1970).CrossRefGoogle Scholar
  107. 107.
    A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].Google Scholar
  108. 108.
    G. P. Mikhailov, A. M. Lobanov, and M. P. Platonov, Vysokomol. Soedin. 8 (4), 692 (1966).Google Scholar
  109. 109.
    L. L. Burshtein and V. P. Malinovskaya, Vysokomol. Soedin., Ser. A 15 (1), 73 (1973).Google Scholar
  110. 110.
    T. I. Borisova and L. L. Burshtein, in Modern Methods in Investigation of Polymers (Khimiya, Moscow, 1982), p. 155 [in Russian].Google Scholar
  111. 111.
    A. M. North, Chem. Soc. Rev. 1, 49 (1972).CrossRefGoogle Scholar
  112. 112.
    M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz, C. Mijangos, A. Arbe, J. Colmenero, A. Radulescu, O. Holderer, M. Ohl, and D. Richter, Phys. Rev. Lett. 110, 1 (2013).Google Scholar
  113. 113.
    C. Scherzinger, O. Holderer, D. Richter, and W. Richtering, Phys. Chem. Chem. Phys. 14, 2762 (2012).CrossRefPubMedGoogle Scholar
  114. 114.
    J. Martin, M. Krutyeva, M. Monkenbusch, A. Arbe, J. Allgaier, A. Radulescu, P. Falus, J. Maiz, C. Mijangos, J. Colmenero, and D. Richter, Phys. Rev. Lett. 104, 1 (2010).Google Scholar
  115. 115.
    F. X. Gallat, A. P. S. Brogan, Y. Fichou, N. McGrath, M. Moulin, M. Hartlein, J. Combet, J. Wuttke, S.Mann, G. Zaccai, C. J. Jackson, A. W. Perriman, and M. Weik, J. Am. Chem. Soc. 134, 13168 (2012).CrossRefPubMedGoogle Scholar
  116. 116.
    E. V. Anufrieva, M. G. Krakovyak, T. N. Nekrasova, and T. V. Sheveleva, Polym. Sci., Ser. B 46 (11–12), 325 (2004).Google Scholar
  117. 117.
    E. V. Anufrieva, R. A. Gromova, Y. E. Kirsh, N. A. Yanul, M. G. Krakovyak, V. Lushchik, V. D. Pautov, and T. V. Sheveleva, Eur. Polym. J. 37, 323 (2001).CrossRefGoogle Scholar
  118. 118.
    T. N. Nekrasova, V. D. Pautov, T. D. Anan’eva, R. Imanbaev, R. Yu. Smyslov, and A. V. Ten’kovtsev, Polym. Sci., Ser. A 57 (1), 6 (2015).CrossRefGoogle Scholar
  119. 119.
    V. D. Pautov, T. N. Nekrasova, T. D. Anan’eva, T. K. Meleshko, D. M. Il’gach, and A. V. Yakimanskiy, Polym. Sci., Ser. A 55 (9), 526 (2013).CrossRefGoogle Scholar
  120. 120.
    V. D. Pautov, T. N. Nekrasova, T. D. Anan’eva, T. K. Meleshko, D. M. Il’gach, and A. V. Yakimanskiy, Polym. Sci., Ser. A 55 (9), 535 (2013).CrossRefGoogle Scholar
  121. 121.
    B. George, V. N. R. Pillai, and B. Mathew, J. Macromol. Sci., Part A: Pure, Appl. Chem. A35, 495 (1998).Google Scholar
  122. 122.
    V. D. Pautov, E. V. Anufrieva, T. D. Anan’eva, V. B. Lushchik, T. N. Nekrasova, and R. Yu. Smyslov, Polym. Sci., Ser. A 48 (2), 183 (2006).CrossRefGoogle Scholar
  123. 123.
    V. D. Pautov, T. D. Anan’eva, M. L. Levit, O. V. Nazarova, and E. F. Panarin, Polym. Sci., Ser. A 58 (5), 684 (2016).CrossRefGoogle Scholar
  124. 124.
    I. V. Perevoshchikova, E. A. Kotova, and Yu. N. Antonenko, Biochemistry (Moscow) 76, 497 (2011).CrossRefGoogle Scholar
  125. 125.
    D. Woll, RSC Adv. 4, 2447 (2014).CrossRefGoogle Scholar
  126. 126.
    Y. Chehreghanianzabi and S. P. Zustiak, Macromol. Res. 24, 995 (2016).CrossRefGoogle Scholar
  127. 127.
    K. Abe, H. Ohno, A. Nii, and E. Tsuchida, Makromol. Chem. 179, 2043 (1978).CrossRefGoogle Scholar
  128. 128.
    I. M. Papisov, V. Yu. Baranovskii, E. I. Sergieva, A. D. Antipina, and V. A. Kabanov, Vysokomol. Soedin., Ser. A 16 (5), 1133 (1974).Google Scholar
  129. 129.
    G. Staikos, K. Karayanni, and Y. Mylonas, Macromol. Chem. Phys. 198, 2905 (1997).CrossRefGoogle Scholar
  130. 130.
    E. Tsuchida, Y. Osada, and H. Ohno, J. Macromol. Sci., Part B: Phys. B17, 683 (1980).Google Scholar
  131. 131.
    V. Yu. Baranovskii, I. D. Zenkov, and V. A. Kabanov, Vysokomol. Soedin., Ser. A 31 (3), 493 (1989).Google Scholar
  132. 132.
    D. Eagland, N. J. Crowther, and C. J. Butler, Eur. Polym. J. 30 (8), 767 (1994).CrossRefGoogle Scholar
  133. 133.
    E. Freire, Drug Discovery Today: Technol. 1, 295 (2004).CrossRefGoogle Scholar
  134. 134.
    M. W. Freyer and E. A. Lewis, Methods Cell Biol. 84, 79 (2008).CrossRefPubMedGoogle Scholar
  135. 135.
    S. C. Bizley, A. C. Williams, and V. V. Khutoryanskiy, Soft Matter 10, 8254 (2014).CrossRefPubMedGoogle Scholar
  136. 136.
    L. Vitorazi, N. Ould-Moussa, S. Sekar, J. Fresnais, W. Loh, J. P. Chapel, and J. F. Berret, Soft Matter 10, 9496 (2014).CrossRefPubMedGoogle Scholar
  137. 137.
    J. C. Fu and J. B. Schlenoff, J. Am. Chem. Soc. 138, 980 (2016).CrossRefPubMedGoogle Scholar
  138. 138.
    A. Bogomolova, S. Keller, J. Klingler, M. Sedlak, D. Rak, A. Sturcova, M. Hruby, P. Stepanek, and S. K. Filippov, Langmuir 30, 11307 (2014).CrossRefPubMedGoogle Scholar
  139. 139.
    A. Bogomolova, S. K. Filippov, L. Starovoytova, B. Angelov, P. Konarev, O. Sedlacek, M. Hruby, and P. Stepanek, J. Phys. Chem. B 118, 4940 (2014).CrossRefPubMedGoogle Scholar
  140. 140.
    S. C. B. Gopinath, Sens. Actuators, B 150, 722 (2010).CrossRefGoogle Scholar
  141. 141.
    S. C. Bizley, A. C. Williams, F. Kemp, and V. V. Khutoryanskiy, Soft Matter 8, 6782 (2012).CrossRefGoogle Scholar
  142. 142.
    M. T. Cook, G. Tzortzis, V. V. Khutoryanskiy, and D. Charalampopoulos, J. Mater. Chem. B 1, 52 (2013).CrossRefGoogle Scholar
  143. 143.
    S. E. Harding, R. B. Gillis, and G. G. Adams, Biophys. Rev. 8, 299 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    T. R. Patel, D. J. Winzor, and D. J. Scott, Methods 95, 55 (2016).CrossRefPubMedGoogle Scholar
  145. 145.
    G. M. Pavlov and S. G. Selyunin, Vysokomol. Soedin., Ser. A 28 (8), 1727 (1986).Google Scholar
  146. 146.
    Y. Gohon, G. Pavlov, P. Timmins, C. Tribet, J. L. Popot, and C. Ebel, Anal. Biochem. 334, 318 (2004).CrossRefPubMedGoogle Scholar
  147. 147.
    G. M. Pavlov, O. V. Okatova, A. S. Gubarev, I. I. Gavrilova, and E. F. Panarin, Macromolecules 47, 2748 (2014).CrossRefGoogle Scholar
  148. 148.
    F. M. Almutairi, G. G. Adams, M. S. Kok, C. J. Lawson, R. Gahler, S. Wood, T. J. Foster, A. J. Rowe, and S. E. Harding, Carbohydr. Polym. 97, 203 (2013).CrossRefPubMedGoogle Scholar
  149. 149.
    X. Y. Wang, X. D. Ye, and G. Z. Zhang, J. Nanomed. Nanotechnol. 12, 536 (2016).Google Scholar
  150. 150.
    G. M. Pavlov, A. M. Breul, M. D. Hager, and U. S. Schubert, Macromol. Chem. Phys. 213, 904 (2012).CrossRefGoogle Scholar
  151. 151.
    G. M. Pavlov, S. E. Harding, and A. J. Rowe, Prog. Colloid Polym. Sci. 113, 76 (1999).CrossRefGoogle Scholar
  152. 152.
    A. P. H. Gelissen, A. J. Schmid, F. A. Plamper, D. V. Pergushov, and W. Richtering, Polymer 55, 1991 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Khutoryanskiy
    • 1
    Email author
  • R. Yu. Smyslov
    • 2
    • 3
  • A. V. Yakimansky
    • 2
    • 4
  1. 1.Reading School of PharmacyUniversity of Reading, WhiteknightsReadingUK
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Petersburg Nuclear Physics InstituteNational Research Centre “Kurchatov Institute,”Gatchina, Leningrad oblastRussia
  4. 4.Institute of ChemistrySt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations