Advertisement

Polymer Science, Series A

, Volume 60, Issue 3, pp 290–297 | Cite as

AC Electrical Properties of Plasma Polymerized o-Methoxyaniline Thin Films

  • Mohammad Jellur RahmanEmail author
  • A. H. Bhuiyan
Functional Polymers
  • 20 Downloads

Abstract

Alternate current (ac) electrical properties of the plasma polymerized o-methoxyaniline (PPOMA) thin films synthesized in the glow discharge plasma using a capacitively coupled reactor are studied. Measurement revealed that the ac electrical conductivity varies with frequency ω as ω n , where the exponent n is less than unity in the range 0.1 to 2.0 kHz, indicating the Debye type conduction mechanism in the PPOMA thin films, while above this frequency range the exponent is become greater than unity indicating non-Debye type conduction. At low frequencies the conduction is considered to be due to hopping of carriers between the localized states. The PPOMA thin films of thicknesses 100−250 nm possesses dielectric constant <10, which remains static in the range 0.1−10 kHz, and decreases at higher temperature due to the orientation polarization. The dielectric loss increases with the increase in frequency having a peak around or above 10 kHz for all the PPOMA films of different thicknesses. Cole-Cole plot between the real and imaginary dielectric constant exhibits single relaxation mechanism in the PPOMA thin films.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Biederman and D. Slavinska, Surf. Coat. Technol. 125, 371 (2000).CrossRefGoogle Scholar
  2. 2.
    J. Goodman, J. Polym. Sci. 44, 551 (1960).CrossRefGoogle Scholar
  3. 3.
    H. Yasuda, Plasma Polymerization (Acad. Press, Orlando, 1985).Google Scholar
  4. 4.
    N. P. Chermisinoff, Handbook of Polymer Science and Technology (Marcel Dekker Inc., New York, 1989).Google Scholar
  5. 5.
    R. Förch, A. N. Chifen, A. Bousquet, H. L. Khor, M. Jungblut, L.-Q. Chu, Z. Zhang, I Osey-Mensah, E.-K. Sinner, and W. Knoll, Chem. Vap. Deposition 13, 280 (2007).CrossRefGoogle Scholar
  6. 6.
    Plasma Deposition, Treatment, and Etching of Polymers, Ed. by R. D’Agostino (Academic Press, San Diego, CA, 1990).Google Scholar
  7. 7.
    F. F. Shi, Surf. Coat. Technol. 82, 1 (1996).CrossRefGoogle Scholar
  8. 8.
    J. Yang, C. Shim, and D. Jung, Chem. Vap. Deposition 8, 35 (2002).CrossRefGoogle Scholar
  9. 9.
    V. Cherpak, P. Stakhira, Z. Hotra, O. Aksimentyeva, B. Tsizh, D. Volynyuk, and I. Bordun, J. Non-Cryst. Solids 354, 4282 (2008).CrossRefGoogle Scholar
  10. 10.
    M. J. Rahman and A. H. Bhuiyan, Thin Solid Films 534, 132 (2013).CrossRefGoogle Scholar
  11. 11.
    P. A. Tamirisa, K. C. Liddell, P. D. Pedrow, and M. A. Osman, J. Appl. Polym. Sci. 93, 1317 (2004).CrossRefGoogle Scholar
  12. 12.
    A. E. Fischer, T. M. McEvoy, and J. W. Long, Electrochim. Acta 54, 2962 (2009).CrossRefGoogle Scholar
  13. 13.
    P. A. Saval, D. J. Shirale, K. Datta, P. Ghosh, and M. D. Shirsat, Int. J. Electrochem. Sci. 2, 595 (2007).Google Scholar
  14. 14.
    D. R. Lamb, Electrical Conduction Mechanisms in Thin Insulating Films (Methuen and Co. Ltd., London, 1967).Google Scholar
  15. 15.
    R. D. Gould and T. S. Shafai, Thin Solid Films 373, 89 (2000).CrossRefGoogle Scholar
  16. 16.
    T. Afroze and A. H. Bhuiyan, Polym. Eng. Sci. 55, 2729 (2015).CrossRefGoogle Scholar
  17. 17.
    K. C. Kao, Dielectric Phenomena in Solids (Elsevier Acad. Press, London, 2004).Google Scholar
  18. 18.
    N. F. Mott, and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971).Google Scholar
  19. 19.
    A. N. Papathanassiou, J. Phys. D: Appl. Phys. 35, L88 (2002).CrossRefGoogle Scholar
  20. 20.
    I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
  21. 21.
    J. S. Nogueira, L. H. C. Mattoso, and R. M. Faria, IEEE Trans. Dielectr. Electr. Insul. 1, 145 (1996).Google Scholar
  22. 22.
    J. C. Dyre and T. B. Schrøder, Rev. Mod. Phys. 72(3), 873 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Pollak and H. A. Pohl, J. Chem. Phys. 63, 2980 (1975).CrossRefGoogle Scholar
  24. 24.
    S. Diaham, M.-L. Locatelli, T. Lebey, and S. Dinculescu, Eur. Phys. J.: Appl. Phys. 49, 10401 (2010).Google Scholar
  25. 25.
    C. J. Mathai, S. Saravanan, M. R. Anantharaman, S. Venkitachalam, and S. Jayalekshmi, J. Phys. D: Appl. Phys. 35, 240 (2002).CrossRefGoogle Scholar
  26. 26.
    H. John, R. M. Thomas, K. T. Mathew, and R. Joseph, J. Appl. Polym. Sci. 92, 592 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Kahouli, J. Appl. Phys. 112, 064103 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Vacatello, D. Y. Yoon, and B. C. Laskowoki, J. Chem. Phys. 93, 779 (1990).CrossRefGoogle Scholar
  29. 29.
    T. Liang, Y. Makita, and S. Kimura, Polymer 42, 4867 (2001).CrossRefGoogle Scholar
  30. 30.
    A. M. Despotopoulou, R. D. Miller, J. F. Rabolt, and C. W. Frank, J. Polym. Sci., Part B: Polym. Phys. 34, 2335 (1996).CrossRefGoogle Scholar
  31. 31.
    A. R. Blythe, Electrical Properties of Polymers (Cambridge Univ. Press, London, 1977).Google Scholar
  32. 32.
    Z. Ahmad, “Polymer Dielectric Materials,” in Dielectric Material, Ed. by M. A. Silaghi (InTech, Croatia, 2012).Google Scholar
  33. 33.
    S. El-Sayed, Phys. B (Amsterdam, Neth.) 4 (454), 197(2014).CrossRefGoogle Scholar
  34. 34.
    P. Debye, Polar Molecules (Chem. Catalogue Company, New York, 1929).Google Scholar
  35. 35.
    K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
  36. 36.
    D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).CrossRefGoogle Scholar
  37. 37.
    Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, and K. G. M. Nair, J. Appl. Phys. 115, 184104 (2014).CrossRefGoogle Scholar
  38. 38.
    M. S. Jogad and S. Ducharme, Curr. Sci. 83, 472 (2002).Google Scholar
  39. 39.
    P. Venkateswarlu, A. Laha, and S. B. Krupanidhi, Thin Solid Films 474, 1 (2005).CrossRefGoogle Scholar
  40. 40.
    H. Hrichi, K. Hriz, M. Benzarti-Ghédira, N. Jaballah, R. B. Chaâbane, M. Majdoub, and H. B. Ouada, Mater. Sci. Semicond. Process. 16, 851 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations