Advertisement

Polymer Science, Series A

, Volume 60, Issue 1, pp 74–80 | Cite as

Multiferroic: A Polymer Composite Based on Organometallic Cobalt Dimers with Dzyaloshinskii–Moriya Effect

  • A. I. Aleksandrov
  • V. G. ShevchenkoEmail author
  • I. A. Aleksandrov
Composites
  • 17 Downloads

Abstract

A magnetoelectric effect was discovered in polystyrene/organoelemental binuclear cobalt complexes with ligands of spatially hindered phenols at room temperature. The Dzyaloshinskii–Moriya interaction (dipole–dipole and anisotropic exchange interaction of unpaired electrons on cobalt ions at 77 K and room temperature) is fulfilled in such complexes. A novel class of high-temperature multiferroics—polymer composites—can be produced on the basis of such molecular structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Neel, Ann. Phys. 4, 243 (1949).Google Scholar
  2. 2.
    A. S. Borovik-Romanov and M. P. Orlova, JETP 4 (4), 531 (1957).Google Scholar
  3. 3.
    I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).CrossRefGoogle Scholar
  4. 4.
    T. Moriya, Phys. Rev. 120, 91 (1960).CrossRefGoogle Scholar
  5. 5.
    I. E. Dzyaloshinskii, JETP 10 (3), 628 (1960).Google Scholar
  6. 6.
    D. N. Astrov, JETP 11 (3), 708 (1960).Google Scholar
  7. 7.
    T. H. O’Dell, The Electrodynamics of Magnetoelectric Media (Pergamon Press, Amsterdam, 1970).Google Scholar
  8. 8.
    A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).CrossRefGoogle Scholar
  9. 9.
    A. R. Akbashev and A. R. Kaul, Russ. Chem. Rev. 80, 1159 (2011).CrossRefGoogle Scholar
  10. 10.
    C.-W. Nan, M. I. Bichurin, D. Shuxiang, D. Viehland, and G. Srinivassan, J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, and A. K. Cheetham, J. Am. Chem. Soc. 134, 13625 (2009).CrossRefGoogle Scholar
  12. 12.
    A. I. Aleksandrov, I. A. Aleksandrov, and V. G. Shevchenko, JETP Lett. 104 (8), 568 (2016).CrossRefGoogle Scholar
  13. 13.
    A. I. Aleksandrov, I. A. Alexandrov, A. I. Prokof’ev, S. P. Solodovnikov, J. S. Hvang, N. Noginova, T. Chisholm, A. Andreev, R. Bah, and R. R. Rakhimov, J. Appl. Phys. 101, 09G508 (2007).CrossRefGoogle Scholar
  14. 14.
    A. I. Aleksandrov, I. A. Aleksandrov, S. B. Zezin, E. N. Degtyarev, A. A. Dubinskii, S. S. Abramchuk, and A. I. Prokof’ev, Russ. J. Phys. Chem. B 10 (1), 69 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transitions (Clarendon Press, Oxford, 1970).Google Scholar
  16. 16.
    E. L. Nagaev, in Magnets with Complex Exchange Interaction (Nauka, Moscow, 1988) [in Russian].Google Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 98. Revision A5 (Pittsburgh, Gaussian Inc., 1998).Google Scholar
  18. 18.
    S. Havriliak and S. Negami, J. Polym. Sci., Polym. Symp. 14, 99 (1966).CrossRefGoogle Scholar
  19. 19.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  20. 20.
    R. Kohlrausch, Ann. Phys. 12, 393 (1847).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Aleksandrov
    • 1
  • V. G. Shevchenko
    • 1
    Email author
  • I. A. Aleksandrov
    • 1
  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations