Advertisement

Polymer Science, Series A

, Volume 59, Issue 5, pp 772–783 | Cite as

Bending moduli of dendritic polymer brushes in a good solvent

  • I. V. Mikhaylov
  • O. V. Borisov
  • A. A. Darinskii
  • F. A. M. Leermakers
  • T. M. Birshtein
Theory and Simulation

Abstract

The effect of branching on the Helfrich mean k C and Gaussian k G bending moduli of polymer brushes consisting of dendrons grafted to both sides of a thin impermeable surface (membrane) is studied theoretically. The case of an athermal solvent is considered. The moduli are calculated from a change in the free energy of a brush upon cylindrical and spherical bending of the grafting surface, respectively. The grafting density σ, the total number of monomer units N, and the number of generations g in tethered dendrons are varied. Two variants of the self-consistent field method are applied: the analytical approach and the numerical Scheutjens-Fleer method. The first method is applied at small values of σ, when the density profile of monomer units of grafted chains is parabolic in shape. The second method is free of these restrictions. The universal ratio between moduli is found: k G =−64/105k C . Both methods predict that the values of moduli decrease with increasing g at constant N and σ. The scaling dependence N 3 remains valid for the moduli of dendritic brushes with different generation numbers g at all of the considered values of σ. The analytical approach also gives the universal scaling dependence k C k G ∼ σ7/3; however, the numerical method predicts that the dependences of moduli on σ become stronger with increasing degree of branching of tethered dendrons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Minko, J. Macromol. Sci., Polym. Rev. 46, 397 (2006).CrossRefGoogle Scholar
  2. 2.
    D. Guzey and D. J. McClements, Adv. Colloid Interface Sci. 21, 227 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, and J. E. Gautrot, Chem. Rev. 10, 10976 (2014).CrossRefGoogle Scholar
  4. 4.
    T. M. Birshtein and V. M. Amoskov, Polym. Sci., Ser. C 42 (2), 172 (2000).Google Scholar
  5. 5.
    A. A. Polotsky, T. Gillich, O. V. Borisov, F. A. M. Leermakers, M. Textor, and T. M. Birshtein, Macromolecules 43, 9555 (2010).CrossRefGoogle Scholar
  6. 6.
    D. Marsh, Biophys. J. 81, 2154 (2001).CrossRefGoogle Scholar
  7. 7.
    T. M. Birshtein, P. A. Iakovlev, V. M. Amoskov, F. A.M. Leermakers, E. B. Zhulina, and O. V. Borisov, Macromolecules 41, 478 (2008).CrossRefGoogle Scholar
  8. 8.
    Z. Lei, S. Yang, and E.-Q. Chen, Soft Matter 11, 1376 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Helfrich, Z. Naturforsch., C: Biochem., Biophys., Biol., Virol. 28, 693 (1973).Google Scholar
  10. 10.
    P. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, 1953).Google Scholar
  11. 11.
    S. T. Milner and T. A. Witten, Macromolecules 21 (8), 2610 (1988).CrossRefGoogle Scholar
  12. 12.
    E. B. Zhulina, V. A. Pryamiyn, and O. V. Borisov, Vysokomol. Soedin., Ser. A 31 (1), 205 (1989).Google Scholar
  13. 13.
    G. T. Pickett, Macromolecules 34, 8784 (2001).CrossRefGoogle Scholar
  14. 14.
    A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45, 7260 (2012).CrossRefGoogle Scholar
  15. 15.
    G. J. Fleer, J. M. H. M. Scheutjens, and B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993).Google Scholar
  16. 16.
    G. T. Pickett, Macromolecules 35, 1896 (2002).CrossRefGoogle Scholar
  17. 17.
    O. V. Borisov, A. A. Polotsky, O. V. Rud, E. B. Zhulina, F. A. M. Leermakers, and T. M. Birshtein, Soft Matter 10, 2093 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Mikhaylov
    • 1
  • O. V. Borisov
    • 1
    • 2
    • 3
  • A. A. Darinskii
    • 1
    • 2
  • F. A. M. Leermakers
    • 4
  • T. M. Birshtein
    • 1
    • 5
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.CNRS, UMR 5254—IPREM—Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux Université de Pau and Pays de l’AdourPauFrance
  4. 4.Department of Physics and Polymer ChemistryWageningen UniversityWageningenthe Netherlands
  5. 5.St. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations