Advertisement

Polymer Science, Series A

, Volume 58, Issue 5, pp 825–836 | Cite as

Microscopic mechanisms of diffusion of higher alkanes

  • N. D. KondratyukEmail author
  • G. E. Norman
  • V. V. Stegailov
Theory and Simulation

Abstract

With the use of n-triacontane models as examples, abnormal characteristics of diffusion that manifest themselves during the application of the Einstein–Smoluchowski relationship and the asymptotic behavior of velocity autocorrelation function of the molecule-mass centers that is used to calculate the diffusion coefficient via the Green–Kubo formula are investigated. On the basis of the data of complementary approaches, the microscopic mechanisms of diffusion in higher alkanes are outlined. The applicability of the Stokes–Einstein relationship for the viscosity coefficient is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Maxwell, Philos. Mag. Ser. 4 19 (124), 19 (1860).CrossRefGoogle Scholar
  2. 2.
    M. S. Green, J. Chem. Phys. 22, 398 (1954).CrossRefGoogle Scholar
  3. 3.
    G. E. Norman and V. V. Stegailov, Math. Model. Comput. Simul. 24 (6), 3 (2012).Google Scholar
  4. 4.
    J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett. 30, 123 (1975).CrossRefGoogle Scholar
  5. 5.
    M. H. Kowsari, S. Alavi, M. Ashrafizaadeh, and B. Najafi, J. Chem. Phys. 129, 224508 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Liu, E. Maginn, A. E. Visser, N. J. Bridges, and E. B. Fox, Ind. Eng. Chem. Res. 51, 7242 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Viscardy, J. Servantie, and P. Gaspard, J. Chem. Phys. 126 (18), 1 (2007).Google Scholar
  8. 8.
    E. Helfand, Phys. Rev. 119, 1 (1960).CrossRefGoogle Scholar
  9. 9.
    M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13, 269 (1992).CrossRefGoogle Scholar
  10. 10.
    P. Blanco, M. M. Bou-Ali, J. K. Platten, P. Urteaga, J. A. Madariaga, and C. Santamaria, J. Chem. Phys. 129, 174504 (2008).CrossRefGoogle Scholar
  11. 11.
    C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).CrossRefGoogle Scholar
  12. 12.
    G. S. Smirnov and V. V. Stegailov, J. Phys. Chem. Lett. 4, 3560 (2013).CrossRefGoogle Scholar
  13. 13.
    N. D. Orekhov and V. V. Stegailov, Carbon 87, 358 (2015).CrossRefGoogle Scholar
  14. 14.
    Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, J. Comput. Chem. 36 (12), 901 (2015).CrossRefGoogle Scholar
  15. 15.
    Yu. D. Fomin, J. Comput. Chem. 34, 2615 (2013).CrossRefGoogle Scholar
  16. 16.
    P. Padilla and S. Toxvaerd, J. Chem. Phys. 95 (1), 509 (1991).CrossRefGoogle Scholar
  17. 17.
    P. Padilla and S. Toxvaerd, J. Chem. Phys. 94 (8), 5650 (1991).CrossRefGoogle Scholar
  18. 18.
    S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Chem. Phys. 101, 8897 (1990).CrossRefGoogle Scholar
  19. 19.
    C. Li and A. Strachan, Polymer 52 (13), 2920 (2011).CrossRefGoogle Scholar
  20. 20.
    C. Li, G. A. Medvedev, E. W. Lee, J. Kim, J. M. Caruthers, and A. Strachan, Polymer 53 (19), 4222 (2012).CrossRefGoogle Scholar
  21. 21.
    W. L. Jorgensen, D. C. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118 (45), 11225 (1996).CrossRefGoogle Scholar
  22. 22.
    H. Feng, W. Gao, J. Nie, J. Wang, X. Chen, L. Chen, X. Liu, H. Ludeman, and Z. Sun, J. Mol. Model. 19 (1), 73 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Liu, E. Maginn, A. E. Visser, N. J. Bridges, and E. B. Fox, Ind. Eng. Chem. Res. 51, 7242 (2012).CrossRefGoogle Scholar
  24. 24.
    M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102 (14), 2569 (1998).CrossRefGoogle Scholar
  25. 25.
    C. Campañá and R. E. Miller, Mol. Simul. 39 (11), 882 (2013).CrossRefGoogle Scholar
  26. 26.
    D. A. Hernandez and H. Dominguez, J. Chem. Phys. 138 (13), 134702 (2013).CrossRefGoogle Scholar
  27. 27.
    J. D. Moore, S. T. Cui, H. D. Cochran, and P. T. Cummings, J. Chem. Phys. 113 (19), 8833 (2000).CrossRefGoogle Scholar
  28. 28.
    R. S. Payal, S. Balasubramanian, I. Rudra, K. Tandon, I. Mahlke, D. Doyle, and R. Cracknell, Mol. Simul. 38 (14–15), 1234 (2012).CrossRefGoogle Scholar
  29. 29.
    Al. Al. Berlin, M. A. Mazo, I. A. Strel’nikov, and N. K. Balabaev, Polym. Sci., Ser. D 8 (2), 85 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Tsige, J. G. Curro, G. S. Grest, and J. D. McCoy, Macromolecules 36, 2158 (2003).CrossRefGoogle Scholar
  31. 31.
    E. A. Zubova, N. K. Balabaev, and L. I. Manevitch, J. Exp. Theor. Phys. 94 (4), 759 (2002).CrossRefGoogle Scholar
  32. 32.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press. Sci., Cambridge, 2004).CrossRefGoogle Scholar
  33. 33.
    G. E. Norman and V. V. Stegailov, Math. Model. Comp. Simul. 5, 305 (2013).CrossRefGoogle Scholar
  34. 34.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Adam Hilger, New York, 1989).Google Scholar
  35. 35.
    S. Plimpton, J. Comput. Phys. 117 (1), 1 (1995).CrossRefGoogle Scholar
  36. 36.
    V. Blavatska and W. Janke, J. Chem. Phys. 133 (18), 184903 (2010).CrossRefGoogle Scholar
  37. 37.
    N. D. Kondratyuk, G. E. Norman, A. V. Lankin, and V. V. Stegailov, J. Phys.: Conf. Ser 653, 012107 (2015).Google Scholar
  38. 38.
    O. A. Dvoretskaya, P. S. Kondratenko, and L. V. Matveev, Zh. Eksp. Teor. Fiz. 110 (1), 58 (2010).Google Scholar
  39. 39.
    G. Ivanovskis, G. E. Norman, and D. R. Usmanova, Dokl. Phys. 57 (11), 427 (2012).CrossRefGoogle Scholar
  40. 40.
    M. V. Tamm, L. I. Nazarov, A. A. Gavrilov, and A. V. Chertovich, Phys. Rev. Lett. 114, 178102 (2015).CrossRefGoogle Scholar
  41. 41.
    N. F. Fatkullin, G. A. Yatsenko, R. Kimmich, and E. Fisher, J. Exp. Theor. Phys. 87 (2), 294 (1998).CrossRefGoogle Scholar
  42. 42.
    D. S. Banks and C. Fradin, Biophys. J. 89 (5), 2960 (2005).CrossRefGoogle Scholar
  43. 43.
    V. P. Shkilev, J. Exp. Theor. Phys. 110 (1), 162 (2010).CrossRefGoogle Scholar
  44. 44.
    V. P. Shkilev, J. Exp. Theor. Phys. 105 (5), 1068 (2007).CrossRefGoogle Scholar
  45. 45.
    V. V. Uchaikin, J. Exp. Theor. Phys. 97 (4), 810 (2003).CrossRefGoogle Scholar
  46. 46.
    V. V. Uchaikin, J. Exp. Theor. Phys. 116 (6), 897 (2013).CrossRefGoogle Scholar
  47. 47.
    B. Hess, S. Len, N. van der Vegt, and K. Kremer, Soft Matter 2 (5), 409 (2006).CrossRefGoogle Scholar
  48. 48.
    V. A. Harmandaris and K. Kremer, Soft Matter 5 (20), 3920 (2009).CrossRefGoogle Scholar
  49. 49.
    V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, High Temp. 46 (1), 30 (2008).CrossRefGoogle Scholar
  50. 50.
    N. M. Chtchelkatchev and R. E. Ryltsev, JETP Lett. 102 (10), 643 (2015).CrossRefGoogle Scholar
  51. 51.
    A. V. Lankin, G. E. Norman, and M. A. Orekhov, J. Phys.: Conf. Ser. 653, 012155 (2015).Google Scholar
  52. 52.
    J. M. Haile, Molecular Dynamics Simulation, Elementary Methods (Wiley, Chichester, 1992).Google Scholar
  53. 53.
    V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, Microfluid. Nanofluid 11 (4), 501 (2011).CrossRefGoogle Scholar
  54. 54.
    V. Ya. Rudyak, G. V. Kharlamov, and A. A. Belkin, High Temp. 39 (2), 264 (2001).CrossRefGoogle Scholar
  55. 55.
    B. J. Alder and T. E. Wainwright, Phys. Rev. A 1 (1), 18 (1970).CrossRefGoogle Scholar
  56. 56.
    R. E. Ryltsev and N. M. Chtchelkatchev, J. Chem. Phys. 141, 124509 (2014).CrossRefGoogle Scholar
  57. 57.
    T. Vardag, N. Karger, and H. D. Lüdemann, Ber. Bunsen-Ges. 95 (8), 859 (1991).Google Scholar
  58. 58.
    F. Beuche, J. Chem. Phys. 20, 1959 (1952).CrossRefGoogle Scholar
  59. 59.
    Ch. Wohlfarth and B. Wohlfahrt, Landolt-Börnstein–Group IV Physical Chemistry, Vol. 18B: Pure Organic Liquids (Springer-Verlag, Berlin, Heidelberg, 2002).Google Scholar
  60. 60.
    M. S. Apfelbaum and E. M. Apfelbaum, J. Electrost. 50, 129 (2001).CrossRefGoogle Scholar
  61. 61.
    M. S. Apfel’baum, Surf. Eng. Appl. Electrochem 45 (2), 102 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. D. Kondratyuk
    • 1
    Email author
  • G. E. Norman
    • 1
  • V. V. Stegailov
    • 1
  1. 1.Joint Institute for Higher TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations