Advertisement

Polymer Science Series A

, Volume 58, Issue 4, pp 585–592 | Cite as

The influence of different fillers on mechanical and physical properties of high-molecular-weight biodegradable aliphatic polyesters

  • A. G. PotapovEmail author
  • I. K. Shundrina
Composites

Abstract

Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Fujimaki, Polym. Degrad. Stab. 59, 209 (1998).CrossRefGoogle Scholar
  2. 2.
    W. Amass, A. Amass, and B. Tighe, Polym. Int. 47, 89 (1998).CrossRefGoogle Scholar
  3. 3.
    A. R Costa-Pinto, A. M Martins, M. J. Castelhano-Carlos, V. M. Correlo, P. C. Sol, A. Longatto-Filho, M. Battacharya, R. L. Reis, and N. M. Neves, J. Bioact. Compat. Polym. 29 (2), 137 (2014).CrossRefGoogle Scholar
  4. 4.
    P. Ngamviriyavong, S. Patntirapong, W. Janvikul, S. Arphavasin, P. Meesap, and W. Singhatanadgit, Compos. Interfaces 2 (5), 431 (2014).CrossRefGoogle Scholar
  5. 5.
    A. E. Tonelli, J. Chem. Phys. 56, 5533 (1972).CrossRefGoogle Scholar
  6. 6.
    L. A. Belfiore, C. Qin, E. Ueda, and A. T. N. Pires, J. Polym. Sci., Part B: Polym. Phys. 31, 409 (1993).CrossRefGoogle Scholar
  7. 7.
    C. H. Chen, H. Y. Lu, M. Chen, J. S. Peng, C. J. Tsai, and C. S. Yang, J. Appl. Polym. Sci. 111, 1433 (2009).CrossRefGoogle Scholar
  8. 8.
    F. Horii, A. Hirai, K. Murayama, R. Kitamura, and T. Suzuki, Macromolecules 16, 273 (1983).CrossRefGoogle Scholar
  9. 9.
    A. C. Fernandes, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci. 29, 1971 (1984).CrossRefGoogle Scholar
  10. 10.
    D. Braun, D. Leiss, M. J. Bergmann, and G. P. Hellmann, Eur. Polym. J. 29, 225 (1993).CrossRefGoogle Scholar
  11. 11.
    R. C. Mayrhofer and P. J. Sell, Angew. Makromol. Chem. 20, 153 (1971).CrossRefGoogle Scholar
  12. 12.
    P. Schuster. Thermochim. Acta 3 (6), 485 (1972).CrossRefGoogle Scholar
  13. 13.
    A. Oishi, M. Zhang, K. Nakayama, T. Masuda, and Y. Taguchi, Polym. J. 38, 710 (2006).CrossRefGoogle Scholar
  14. 14.
    S. H. Lee and E. Gelerinter, Polymer 35, 2725 (1994).CrossRefGoogle Scholar
  15. 15.
    M. S. Nikolic and J. Djonlagic, Polym. Degrad. Stab. 74, 263 (2001).CrossRefGoogle Scholar
  16. 16.
    A. A. Vassiliou, D. Bikiaris, K. Mabrouk, and M. Kontopoulou, J. Appl. Polym. Sci. 119, 2010 (2011).CrossRefGoogle Scholar
  17. 17.
    D. N Bikiaris, G. Z Papageorgiou, and D. S Achilias, Polym. Degrad. Stab. 91, 31 (2006).CrossRefGoogle Scholar
  18. 18.
    C. H. Chen, C. S. Yang, M. Chen, Y. C. Shih, H. S. Hsu, and S. F. Lu, eXPRESS Polym. Lett. 5 (4), 284 (2011).CrossRefGoogle Scholar
  19. 19.
    S. S. Ray, K. Okamoto, and M. Okamoto, Macromolecules 36 (7), 2355 (2003).CrossRefGoogle Scholar
  20. 20.
    S. S. Ray, K. Okamoto, and M. Okamoto, J. Appl. Polym. Sci. 102, 777 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. Someya, T. Nakazato, N. Teramoto, and M. Shibata, J. Appl. Polym. Sci. 91, 1463 (2004).CrossRefGoogle Scholar
  22. 22.
    S. Zhu, Y. Zhao, and Z. Qium, J. Appl. Polym. Sci. 124, 4268 (2012).CrossRefGoogle Scholar
  23. 23.
    J. A. Ratto, P. J. Stenhouse, M. Auerbach, J. Mitchell, and R. Farrell, Polymer 40, 6777 (1999).CrossRefGoogle Scholar
  24. 24.
    Y. J. Phua, W. S. Chow, and Z. A. M. Ishak, eXPRESS Polym. Lett. 5 (2), 93 (2011).CrossRefGoogle Scholar
  25. 25.
    W. Zhou, X. Wang, P. Wang, W. Zhang, and J. Ji, J. Appl. Polym. Sci. 130, 4075 (2013).CrossRefGoogle Scholar
  26. 26.
    J. Zhao, X. Wang, W. Zhou, E. Zhi, W. Zhang, and J. Ji, J. Appl. Polym. Sci. 130 (5), 3212 (2013).CrossRefGoogle Scholar
  27. 27.
    B. P. Calabia, F. Ninomiya, H. Yagi, A. Oishi, K. Taguchi, M. Kunioka, and M. Funabashi, Polymers 5, 128 (2013).CrossRefGoogle Scholar
  28. 28.
    K. I. Ku-marsilla and C. J. R. Verbeek, Macromol. Mater. Eng. 300, 161 (2015).CrossRefGoogle Scholar
  29. 29.
    X. Li and G. B. McKenna, ACS Macro Lett. 1, 388 (2012).CrossRefGoogle Scholar
  30. 30.
    Y. F. Shih, L. S. Chen, and R. J. Jeng, Polymer 49, 4602 (2008).CrossRefGoogle Scholar
  31. 31.
    S. S. Ray, M. Bousmina, and K. Okamoto, Macromol. Mater. Eng. 290, 759 (2005).CrossRefGoogle Scholar
  32. 32.
    G. X. Chen, E. S. Kim, and J. S. Yoon, J. Appl. Polym. Sci. 98, 1727 (2005).CrossRefGoogle Scholar
  33. 33.
    J. Zhao, S. L. Simon, and G. B. McKenna, Nat. Commun. 4, 1783 (2013).CrossRefGoogle Scholar
  34. 34.
    B. P. Grady, A. Paul, J. E. Peters, and W. T. Ford, Macromolecules 42, 6152 (2009).CrossRefGoogle Scholar
  35. 35.
    J. I. Velasco, M. Ardanuy, V. Realinho, M. Antunes, A. I. Fernández, J. I. González-Peña, M. A. Rodríguez-Pérez, and J. A. de Saja, J. Appl. Polym. Sci. 102, 1213 (2006).CrossRefGoogle Scholar
  36. 36.
    D. W. Van Krevelen and K. T. Nijenhuis. Properties of Polymers. Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed. (Elsevier, Amsterdam, 2009).Google Scholar
  37. 37.
    D. Z. Papageorgiou and D. N. Bikiaris, Polymer 46 (26), 12081 (2005).CrossRefGoogle Scholar
  38. 38.
    M. A. Kennedy, A. J. Peacock, and L. Mandelker, Macromolecules 27, 5297 (1994).CrossRefGoogle Scholar
  39. 39.
    L. Mandelkern, Polym. J. 17, 337 (1985).CrossRefGoogle Scholar
  40. 40.
    J. S. Lim, S. M. Hong, D. K. Kim, and S. S. Im, J. Appl. Polym. Sci. 107 (6), 3598 (2008).CrossRefGoogle Scholar
  41. 41.
    G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, and G. P. Karayannidis, Thermochim. Acta 427, 117 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.N.N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations