Advertisement

Polymer Science Series A

, Volume 58, Issue 3, pp 476–486 | Cite as

Simulation of the adhesion properties of the polyethylene/carbon nanotube interface

  • N. D. OrekhovEmail author
  • V. V. Stegailov
Theory and Simulation

Abstract

The properties of a polyethylene matrix in contact with carbon nanoinclusions, such as carbon nanotubes and graphene plates, are studied via the molecular-dynamics method. Ultimate shear stresses for the polyethylene/graphene interface are calculated, and the effect of the filler aspect ratio on the nanocomposite elastic modulus is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Wang, P. Ciselli, and T. Peijs, Nanotecnology 18 (45), 455709 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Hu, L. Onyebueke, and A. Abatan, J. Miner. Mater. Charact. Eng. 9 (4), 275 (2010).Google Scholar
  3. 3.
    A. H. Barber, S. R. Cohen, and H. D. Wagner, Appl. Phys. Lett. 82 (23), 4140 (2003).CrossRefGoogle Scholar
  4. 4.
    M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li, and K. Liao, Polymer 44 (25), 7757 (2003).CrossRefGoogle Scholar
  5. 5.
    M. H. Al-Saleh and U. Sundararaj, Composites, Part A 42 (12), 2126 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Kutvonen, G. Rossi, S. R. Puisto, N. K. J. Rostedt, and T. Ala-Nissila, J. Chem. Phys. 137 (21), 214901 (2012).CrossRefGoogle Scholar
  7. 7.
    E. Zhuravlev, A. Wurm, P. Potschke, R. Androsch, J. Schmelzer, and C. Schick, Eur. Polym. J. 52, 1 (2014).CrossRefGoogle Scholar
  8. 8.
    V. E. Smirnova, I. V. Gofman, E. M. Ivan’kova, A. L. Didenko, A. V. Krestinin, G. I. Zvereva, V. M. Svetlichnyi, and V. E. Yudin, Polym. Sci., Ser. A 55 (4), 268 (2013).CrossRefGoogle Scholar
  9. 9.
    K. Lu, N. Grossiord, C. E. Koning, H. E. Miltner, B. Mele, and L. Joachim, Macromolecules 41 (21), 8081 (2008).CrossRefGoogle Scholar
  10. 10.
    Y. Liu and S. Kumar, ACS Appl. Mater. Interfaces 6 (9), 6069 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Zhang, W. Lin, C.-P. Wong, D. G. Bucknall, and S. Kumar, ACS Appl. Mater. Interfaces 2 (6), 1642 (2010).CrossRefGoogle Scholar
  12. 12.
    S. G. Falkovich, S. V. Larin, A. V. Lyulin, V. E. Yudin, J. M. Kenny, and S. V. Lyulin, RSC Adv. 4 (89), 48606 (2014).CrossRefGoogle Scholar
  13. 13.
    T. Ramanathan and A. Abdala, Nat. Nanotechnol. 3 (6), 327 (2008).CrossRefGoogle Scholar
  14. 14.
    P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, Composites, Part A 41 (10), 1345 (2010).CrossRefGoogle Scholar
  15. 15.
    S. A. Gubin, I. V. Maklashova, and E. I. Dzhelilova, Nanotechnol. Russ 10 (1–2), 18 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Yu. Kuksin, A. V. Lankin, I. V. Morozov, G. E. Norman, N. D. Orekhov, V. V. Pisarev, G. S. Smirnov, S. V. Starikov, V. V. Stegailov, and A. V. Timofeev, Program. Sist.: Teor. Prilozh. 5 (1), 191 (2014).Google Scholar
  17. 17.
    V. V. Stegailov and G. E. Norman, Program. Sist.: Teor. Prilozh. 5 (1), 111 (2014).Google Scholar
  18. 18.
    V. V. Stegailov, N. D. Orekhov, and G. S. Smirnov, Parallel Computing Technologies, Ed. by V. Malyshkin, Lecture Notes in Computer Science 9251, 469 (2015).CrossRefGoogle Scholar
  19. 19.
    S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, J. Phys. Chem. B 106 (12), 3046 (2002).CrossRefGoogle Scholar
  20. 20.
    I. A. Strelnikov, N. K. Balabaev, M. A. Mazo, and E. F. Oleinik, Polym. Sci., Ser. A 56 (2), 219 (2014).CrossRefGoogle Scholar
  21. 21.
    K. V. Shaitan, Russ. J. Phys. Chem. B 8 (4), 524 (2014).CrossRefGoogle Scholar
  22. 22.
    I. A. Strelnikov, M. A. Mazo, N. K. Balabaev, and E. F. Oleinik, Polym. Sci., Ser. A 56 (4), 511 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Maiti, J. Wescott, and P. Kung, Mol. Simul. 31 (2–3), 143 (2005).CrossRefGoogle Scholar
  24. 24.
    A. A. Gavrilov, A. V. Chertovich, P. G. Khalatur, and A. R. Khokhlov, Soft Matter 9 (15), 4067 (2013).CrossRefGoogle Scholar
  25. 25.
    J. W. Ponder and D. Case, Adv. Protein Chem. 66, 27 (2003).CrossRefGoogle Scholar
  26. 26.
    A. L. Rabinovich and A. P. Lyubartsev, Polym. Sci., Ser. C 55 (1), 162 (2013).CrossRefGoogle Scholar
  27. 27.
    S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, J. Phys. Chem. B 111 (27), 7812 (2007).CrossRefGoogle Scholar
  28. 28.
    S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. Chem. 94 (26), 8897 (1990).CrossRefGoogle Scholar
  29. 29.
    C. D. Wick, M. G. Martin, and J. I. Siepmann, J. Phys. Chem. B 104 (33), 8008 (2000).CrossRefGoogle Scholar
  30. 30.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112 (14), 6472 (2000).CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, X. Zhuang, J. Muthu, T. Mabrouki., M. Fontaine, Y. Gong, and T. Rabczuk, Composites, Part B 63, 27, (2014).CrossRefGoogle Scholar
  32. 32.
    S. Rouhi, Y. Alizadeh, and R. Ansari, Appl. Surf. Sci. 292, 958 (2014).CrossRefGoogle Scholar
  33. 33.
    N. D. Orekhov and V. V. Stegailov, Carbon 87, 358 (2015).CrossRefGoogle Scholar
  34. 34.
    N. D. Orekhov and V. V. Stegailov, Dokl. Phys. 60 (3), 109 (2015).CrossRefGoogle Scholar
  35. 35.
    D. Reith, M. Pütz, and F. Müller-Plathe, J. Comput. Chem. 24 (13), 1624 (2003).CrossRefGoogle Scholar
  36. 36.
    F. Ercolessi and J. Adams, Europhys. Lett. 26 (8), 583 (1994).CrossRefGoogle Scholar
  37. 37.
    V. Perebeinos and J. Tersoff, Nano Lett. 14 (8), 4376 (2014).CrossRefGoogle Scholar
  38. 38.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321 (5887), 385 (2008).CrossRefGoogle Scholar
  39. 39.
    P. E. Rouse, J. Chem. Phys. 21 (7), 1272 (1953).CrossRefGoogle Scholar
  40. 40.
    M. Perez, O. Lame, F. Leonforte, and J.-L. Barrat, J. Chem. Phys. 128 (23), 234904 (2008).CrossRefGoogle Scholar
  41. 41.
    S. Plimpton, J. Comput. Phys. 117 (1), 1 (1995).CrossRefGoogle Scholar
  42. 42.
    V. A. Harmandaris and K. Kremer, Macromolecules 42 (3), 791 (2009).CrossRefGoogle Scholar
  43. 43.
    R. Rafiee, T. Rabczuk, R. Pourazizi, J. Zhao, and Y. Zhang, Adv. Mater. Sci. Eng. 2013, Article ID 183026 (2013).Google Scholar
  44. 44.
    M. Rahmat and P. Hubert, Compos. Sci. Technol. 72 (1), 72 (2011).CrossRefGoogle Scholar
  45. 45.
    Q. Zheng, D. Xia, Q. Xue, K. Yan, X. Gao, and Q. Li, Appl. Surf. Sci. 255 (6), 3534 (2009).CrossRefGoogle Scholar
  46. 46.
    Y. Li, Y. Liu, X. Peng, C. Yan, S. Liu, and N. Hu, Comput. Mater. Sci. 50 (6), 1854 (2011).CrossRefGoogle Scholar
  47. 47.
    C. Lv, Q. Xue, D. Xia, M. Ma, J. Xie, and H. Chen, J. Phys. Chem. C 114 (14), 6588 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations