Advertisement

Polymer Science Series A

, Volume 58, Issue 2, pp 292–301 | Cite as

Formation of a vesicle-like globule under steric restrictions

  • A. A. Glagoleva
  • V. V. Vasilevskaya
Theory and Simulation

Abstract

The effect of steric restrictions on the coil-to-globule transition of a macromolecule that is amphiphilic at the level of a particular unit and capable of spontaneous formation of vesicle-like globules in excess solvent (without steric restrictions) was studied via computer simulation.

Keywords

Macromolecule Monomer Unit Side Group Pore Radius Aggregation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. LaMarque, T.-V. L. Le, and S. C. Harvey, Biopolymers 73, 348 (2004).CrossRefGoogle Scholar
  2. 2.
    B. Alberts, A. Johanson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland Publ., New York, 2001).Google Scholar
  3. 3.
    J. Feng and E. Ruckenstein, J. Chem. Phys. 126, 124902 (2007).CrossRefGoogle Scholar
  4. 4.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994).Google Scholar
  5. 5.
    P. Cifra and T. Bleha, Macromol. Theory Simul. 21, 15 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Sakaue and E. Raphaël, Macromolecules 39, 2621 (2006).CrossRefGoogle Scholar
  7. 7.
    A.-C. Shi and B. Li, Soft Matter 9, 1398 (2013).CrossRefGoogle Scholar
  8. 8.
    M. P. Taylor, W. Paul, and K. Binder, J. Chem. Phys. 131, 114907 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Higuchi, K. Yoshikawa, and T. Iwaki, Phys. Rev. E 84, 021924 (2011).CrossRefGoogle Scholar
  10. 10.
    A. A. Glagoleva, V. V. Vasilevskaya, K. Yoshikawa, and A. R. Khokhlov, J. Chem. Phys. 139, 244901 (2013).CrossRefGoogle Scholar
  11. 11.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  12. 12.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  13. 13.
    V. V. Vasilevskaya and V. A. Ermilov, Polym. Sci., Ser. A 53, 846 (2011).CrossRefGoogle Scholar
  14. 14.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, P. G. Khalatur, A. R. Khokhlov, Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  15. 15.
    V. V. Vasilevskaya, V. A. Markov, G. ten Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).CrossRefGoogle Scholar
  16. 16.
    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, J. Chem. Phys. 137, 084901 (2012).CrossRefGoogle Scholar
  17. 17.
    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, Macromolecules 48, 3767 (2015).CrossRefGoogle Scholar
  18. 18.
    Yu. A. Kriksin, P. G. Khalatur, I. Ya. Erukhimovich, G. ten Brinke, and A. R. Khokhlov, Soft Matter 5, 2896 (2009).CrossRefGoogle Scholar
  19. 19.
    Yu. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, Yu. G. Smirnova, and G. ten Brinke, J. Chem. Phys. 128, 244903 (2008).CrossRefGoogle Scholar
  20. 20.
    P. G. Khalatur and A. R. Khokhlov, Polymers (Poland) 59 (1), 74 (2014).Google Scholar
  21. 21.
    A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Polym. Sci., Ser. A 52, 182 (2010).CrossRefGoogle Scholar
  22. 22.
    A. R. Khokhlov and P. G. Khalatur, Chem. Phys. Lett. 461, 58 (2008).CrossRefGoogle Scholar
  23. 23.
    A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Macromol. Theory Simul. 24, 393 (2015).CrossRefGoogle Scholar
  24. 24.
    V. V. Vasilevskaya, A. A. Klochkov, P. G. Khalatur, A. R. Khokhlov, and G. ten Brinke, Macromol. Theory Simul. 10, 389 (2001).CrossRefGoogle Scholar
  25. 25.
    Y. Sliozberg and C. F. Abrams, J. Polym. Sci., Polym. Phys. Ed. 43, 983 (2005).CrossRefGoogle Scholar
  26. 26.
    P. E. Theodorakis, W. Paul, and K. Binder, J. Chem. Phys. 133, 104901 (2010).CrossRefGoogle Scholar
  27. 27.
    O. S. Pevnaya, E. Yu. Kramarenko, and A. R. Khokhlov, Polym. Sci., Ser. A 49, 1233 (2007).CrossRefGoogle Scholar
  28. 28.
    R. Vijay, S. Angayarkanny, B. S. Reddy, A. B. Mandal, and G. Baskar, J. Colloid Interface Sci. 346, 143 (2010).CrossRefGoogle Scholar
  29. 29.
    M. B. Runge, C. E. Lipscomb, L. R. Ditzler, M.K.Mahanthappa, A. V. Tivanski, and N. B. Bowden, Macromolecules 41, 7687 (2008).CrossRefGoogle Scholar
  30. 30.
    Y. Xia, B. D. Olsen, J. A. Kornfield, and R. H. Grubbs, J. Am. Chem. Soc. 131, 18525 (2009).CrossRefGoogle Scholar
  31. 31.
    L. Zhao, M. D. Goodman, N. B. Bowden, and Z. Lin, Soft Matter 5, 4698 (2009).CrossRefGoogle Scholar
  32. 32.
    B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y.-Y. Won, and F. S. Bates, J. Phys. Chem. B 106, 2848 (2002).CrossRefGoogle Scholar
  33. 33.
    D. Shi, Y. Gao, L. Sun, and M. Chen, Polym. Sci., Ser. A 56, 275 (2014).CrossRefGoogle Scholar
  34. 34.
    E. Betthausen, C. Hanske, M. Müller, A. Fery, F. H. Schacher, A. H. E. Müller, and D. J. Pochan, Macromolecules 47, 1672 (2014).CrossRefGoogle Scholar
  35. 35.
    S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  36. 36.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale, Ed. by J. S. Vetter (CRC, Boca Raton, FL, 2013), p.283.Google Scholar
  37. 37.
    T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations