Polymer Science Series A

, Volume 58, Issue 1, pp 57–75 | Cite as

Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends

  • Gaurav Madhu
  • Haripada Bhunia
  • Pramod K. Bajpai
  • Golok B. Nando
Polymer Blends


Blends of high density polyethylene/poly(lactic acid) with/without compatibilizer and pro-oxidant (cobalt stearate) were prepared by melt blending technique. In ratio 80/20, the blend revealed a good combination of tensile properties and optimum poly(lactic acid) content. The improvement in mechanical properties of this blend was achieved by addition of 4 phr compatibilizer. Cobalt stearate (CoSt) was added to 80/20 blends in 0.1% and 0.2% (w/w) ratios. The obtained blends were characterized by DSC, SEM, FTIR spectroscopy, rheological study, etc. All the prepared blends were able to biodegrade in composting environment and the blend containing pro-oxidant was maximum degraded.


Storage Modulus HDPE LDPE Lower Critical Solution Temperature Polymer Blend 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Muthukumar, A. Aravinthan, and D. Mukesh, Polym. Degrad. Stab. 95, 1988 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Muthukumar, A. Aravinthana, R. Dineshram, R. Venkatesan, and M. Doble, J. Microb. Biochem. Technol. 6, 116 (2014).CrossRefGoogle Scholar
  3. 3.
    V. Urtuvia, P. Villegas, M. González, and M. Seeger, Int. J. Biol. Macromol. 70, 208 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Shirai, M. Grossmann, S. Mali, F. Yamashita, P. Garcia, and C. Müller, Carbohydr. Polym. 92, 19 (2013).CrossRefGoogle Scholar
  5. 5.
    M. de Lourdes Rezende, D. dos Santos Rosa, C. d. G. F. Guedes, G. J. M. Fechine, and J. A. Nóbrega, J. Mater. Sci. 49, 1544 (2014).CrossRefGoogle Scholar
  6. 6.
    S. A. Casarin, J. A. Agnelli, S. M. Malmonge, and F. Rosário, Polímeros 23, 115 (2013).Google Scholar
  7. 7.
    Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, Int. J. Mol. Sci. 10, 3722 (2009).CrossRefGoogle Scholar
  8. 8.
    A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, Biotechnol. Adv. 26, 246 (2008).CrossRefGoogle Scholar
  9. 9.
    A.-F. Mohd-Adnan, H. Nishida, and Y. Shirai, Polym. Degrad. Stab. 93, 1053 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Singh, H. Bhunia, P. K. Bajpai, and V. Choudhary, J. Polym. Eng. 32, 59 (2012).CrossRefGoogle Scholar
  11. 11.
    V. Santana, S. Gonçalves, J. Agnelli, and S. Martins- Franchetti, J. Appl. Polym. Sci. 125, 536 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Araujo, M. Oliveira, R. Oliveira, G. Botelho, and A. V. Machado, Environ. Sci. Pollut. Res. Int. 21, 9477 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Lewitus, S. McCarthy, A. Ophir, and S. Kenig, J. Polym. Environ. 14, 171 (2006).CrossRefGoogle Scholar
  14. 14.
    Y.-L. Wang, X. Hu, H. Li, X. Ji, and Z.-M. Li, Polym-Plast. Technol. Eng. 49, 1241 (2010).CrossRefGoogle Scholar
  15. 15.
    K. Hamad, M. Kaseem, and F. Deri, J. Polym. Res. 18, 1799 (2011).CrossRefGoogle Scholar
  16. 16.
    M. Kaseem, K. Hamad, and F. Deri, Polym. Sci., Ser A 54, 165 (2012).CrossRefGoogle Scholar
  17. 17.
    D. Rosa, D. Grillo, M. Bardi, M. Calil, C. Guedes, E. Ramires, and E. Frollini, Polym. Test. 28, 836 (2009).CrossRefGoogle Scholar
  18. 18.
    G. Scottand and D. M. Wiles, Biomacromolecules 2, 615 (2001).CrossRefGoogle Scholar
  19. 19.
    E. Chiellini, A. Corti, S. D’antone, and R. Baciu, Polym. Degrad. Stab. 91, 2739 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Koutny, J. Lemaire, and A.-M. Delort, Chemosphere. 64, 1243 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Benítez, J. J. Sánchez, M. L. Arnal, A. J. Müller, O. Rodríguez, and G. Morales, Polym. Degrad. Stab. 98, 490 (2013).CrossRefGoogle Scholar
  22. 22.
    C. Abrusci, J. Pablos, I. Marín, E. Espí, T. Corrales, and F. Catalina, Int. Biodeterior. Biodegrad. 83, 25 (2013).CrossRefGoogle Scholar
  23. 23.
    I. Kyrikou, D. Briassoulis, M. Hiskakis, and E. Babou, Polym. Degrad. Stab. 96, 2237 (2011).CrossRefGoogle Scholar
  24. 24.
    A. Corti, M. Sudhakar, and E. Chiellini, J. Polym. Environ. 20, 1007 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Fontanella, S. Bonhomme, J.-M. Brusson, S. Pitteri, G. Samuel, G. Pichon, J. Lacoste, D. Fromageot, and J. Lemaire, A.-M. Delort, Polym. Degrad. Stab. 98, 875 (2013).CrossRefGoogle Scholar
  26. 26.
    M. K. Konduri, G. Koteswarareddy, D. Rohini Kumar, B. Venkata Reddy, and M. Lakshmi Narasu, J. Appl. Polym. Sci. 120, 3536 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Pablos, C. Abrusci, I. Marín, J. López-Marín, F. Catalina, E. Espí, and T. Corrales, Polym. Degrad. Stab. 95, 2057 (2010).CrossRefGoogle Scholar
  28. 28.
    P. Roy, P. Surekha, C. Rajagopal, and V. Choudhary, eXPRESS Polym. Lett. 1, 208 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Grima, V. Bellon-Maurel, P. Feuilloley, and F. Silvestre, J. Polym. Environ. 8, 183 (2000).CrossRefGoogle Scholar
  30. 30.
    ASTM (ASTM International) D5338: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions, 1998.Google Scholar
  31. 31.
    ISO (International Organization for Standardization) 14855-1: Determination of the Ultimate Aerobic Biodegradabilty and Disintergration of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide, 1995.Google Scholar
  32. 32.
    A. Steinbüchel, General Aspects and Special Applications (Wiley-Vch, Germany, 2003).Google Scholar
  33. 33.
    W. Work, K. Horie, M. Hess, and R. Stepto, Pure Appl. Chem. 76, 1985 (2004).CrossRefGoogle Scholar
  34. 34.
    R. Dell’Erba, G. Groeninckx, G. Maglio, M. Malinconico, and A. Migliozzi, Polymer 4, 7831 (2001).CrossRefGoogle Scholar
  35. 35.
    N. Nyamweya and S. W. Hoag, Pharm. Res. 17, 625 (2000).CrossRefGoogle Scholar
  36. 36.
    D. R. Paul, Polymer Blends (Elsevier, New York, 2012).Google Scholar
  37. 37.
    S. Mould, J. Barbas, A. Machado, J. Nóbrega, and J. Covas, Polym. Test. 30, 602 (2011).CrossRefGoogle Scholar
  38. 38.
    M. Pakravan, M.-C. Heuzey, and A. Ajji, Macromolecules 45, 7621 (2012).CrossRefGoogle Scholar
  39. 39.
    R. K. Basha, K. Konno, H. Kani, and T. Kimura, Eng. Agric. Environ. Food 4, 37 (2011).CrossRefGoogle Scholar
  40. 40.
    P. Hyun Kang, and Y. Chang Nho, Radiat. Phys. Chem. 60, 79 (2001).CrossRefGoogle Scholar
  41. 41.
    G. Singh, H. Bhunia, A. Rajor, R. Jana, and V. Choudhary, J. Appl. Polym. Sci. 118, 496 (2010).CrossRefGoogle Scholar
  42. 42.
    M. Kopcilová, J. Hubácková, J. Ružicka, M. Dvorácková, M. Julinová, M. Koutný, M. Tomalová, P. Alexy, P. Bugaj, and J. Filip, J. Polym. Environ. 21, 88 (2013).CrossRefGoogle Scholar
  43. 43.
    M. L. Di Lorenzo, P. Rubino, and M. Cocca, Eur. Polym. J. 49, 3309 (2013).CrossRefGoogle Scholar
  44. 44.
    J. F. Zhang and X. Sun, Biomacromolecules 5, 1446 (2004).CrossRefGoogle Scholar
  45. 45.
    M. Zhang and N. L. Thomas, Adv. Polym. Technol. 30, 67 (2011).CrossRefGoogle Scholar
  46. 46.
    G. M. Bohlmann, “General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers,” in Handbook of Biodegradable Polymers, Ed. By C. Bastoili (Rapra Technol. Lim., Shawbury; Shrewsbury; Shropshire, 2005), Chap. 6.Google Scholar
  47. 47.
    N. Eshtiaghi, F. Markis, S. D. Yap, J.-C. Baudez, and P. Slatter, Water Res. 47, 5493 (2013).CrossRefGoogle Scholar
  48. 48.
    S. Jose, A. Aprem, B. Francis, M. Chandy, P. Werner, V. Alstaedt, and S. Thomas, Eur. Polym. J. 40, 2105 (2004).CrossRefGoogle Scholar
  49. 49.
    G. Kwak, K. Inoue, Y. Tominaga, S. Asai, and M. Sumita, J. Appl. Polym. Sci. 82, 3058 (2001).CrossRefGoogle Scholar
  50. 50.
    A. M. Shetty and M. J. Solomon, Polymer 50, 261 (2009).CrossRefGoogle Scholar
  51. 51.
    L. K. Massey, Permeability Properties of Plastics and Elastomers: A Guide to Packaging and Barrier Materials (William Andrew, New York, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Gaurav Madhu
    • 1
  • Haripada Bhunia
    • 1
  • Pramod K. Bajpai
    • 1
  • Golok B. Nando
    • 2
  1. 1.Department of Chemical EngineeringThapar UniversityPatiala, PunjabIndia
  2. 2.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations