Polymer Science Series A

, Volume 57, Issue 6, pp 910–923 | Cite as

Non-linearity in rheological properties of polymers and composites under large amplitude oscillatory shear

  • S. O. Ilyin


Various approaches to the calculation of the components of the dynamic modulus measured at large amplitude oscillatory shear are compared. The method of Fourier analysis using Chebyshev polynomials, the determination of moduli via the differentiation of stress at the points of zero and maximum deformations, and the integration of the Lissajous figures are considered. A comparative analysis of material-nonlinearity measures obtained through various methods is performed. The measures of viscous and elastic nonlinearities, the mechanical-loss tangent of the material, and the power of its response are compared. The investigation is conducted for model samples of polyisobutylene in viscous-flow and high-elastic relaxation states and polyisoprene filled with nanoparticles of silicon oxide.


Large Deformation Polymer Science Series Dynamic Modulus Relaxation State Amplitude Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ya. Malkin and A. I. Isayev, Rheology: Concepts, Methods, and Applications (ChemTecPubl., Toronto, 2012).Google Scholar
  2. 2.
    R. H. Ewoldt, C. Clasen, A. E. Hosoi, and G. H. McKinley, Soft Matter 3, 634 (2007).CrossRefGoogle Scholar
  3. 3.
    P. Ptaszek, J. Food Eng. 146, 53 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Komatsu, T. Mitsui, and S. Onogi, Trans. Soc. Rheol. 17, 351 (1973).CrossRefGoogle Scholar
  5. 5.
    K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, G. H. McKinley, Prog. Polym. Sci. 36, 1697 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Bia, D. Lia, L. Wang, Y. Wang, B. Adhikarid, Carbohydr. Polym. 92, 1151 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Ozkan, T. W. Gillece, L. Senak, and D. J. Moore, Int. J. Cosmet. Sci 34, 193 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Kempf, D. Ahirwal, M. Cziep, and M. Wilhelm, Macromolecules 46, 4978 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Ahirwal, S. Filipe, I. Neuhaus, M. Busch, G. Schlatter, M. Wilhelm, J. Rheol 58, 635 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Shu, W. Sun, T. Wang, C. Wang, X. Liu, Z. Tong, Colloids Surf., A 434, 220 (2013).CrossRefGoogle Scholar
  11. 11.
    X. Qiao and R. A. Weiss, Macromolecules 46, 2417 (2013).CrossRefGoogle Scholar
  12. 12.
    A. K. Gurnon and N. J. Wagner, J. Rheol. 56, 333 (2012).CrossRefGoogle Scholar
  13. 13.
    D. M. Hoyle, D. Auhl, O. G. Harlen, V. C. Barroso, M. Wilhelm, T. C. B. McLeish, J. Rheol. 58, 969 (2014).CrossRefGoogle Scholar
  14. 14.
    J.-E. Bae and K. S. Cho, J. Rheol. 59, 525 (2015).CrossRefGoogle Scholar
  15. 15.
    S. A. Rogers, J. Rheol. 56, 1129 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Kim, D. Merger, M. Wilhelm, and M. E. Helgeson, J. Rheol. 58, 1359 (2014).CrossRefGoogle Scholar
  17. 17.
    S.-Q. Wang, Y. Wang, S. Cheng, X. Li, X. Zhu, H. Sun, Macromolecules 46, 3147 (2013).CrossRefGoogle Scholar
  18. 18.
    R. Salehiyan, Y. Yoo, W. J. Choi, and K. Hyun, Macromolecules 47, 4066 (2014).CrossRefGoogle Scholar
  19. 19.
    M. R. B. Mermet-Guyennet, J. G. de Castro, M. Habibi, N. Martzel, M. M. Denn, D. Bonn, J. Rheol. 59, 21 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Laurati, S. U. Egelhaaf, and G. Petekidis, J. Rheol. 58, 1395 (2014).CrossRefGoogle Scholar
  21. 21.
    C. Perge, N. Taberlet, T. Gibaud, and S. Manneville, J. Rheol. 58, 1331 (2014).CrossRefGoogle Scholar
  22. 22.
    F. Cyriac, J. A. Covas, L. H. G. Hilliou, and I. Vittorias, Rheol. Acta 53, 817 (2014).CrossRefGoogle Scholar
  23. 23.
    J. M. Kim, A. P. R. Eberle, A. K. Gurnon, L. Porcar, N. J. Wagner, J. Rheol. 58, 1301 (2014).CrossRefGoogle Scholar
  24. 24.
    S. O. Ilyin, V. G. Kulichikhin, and A. Y. Malkin, Polym. Sci., Ser. A 55 (8), 503 (2013).CrossRefGoogle Scholar
  25. 25.
    R. H. Ewoldt, J. Rheol. 57, 177 (2013).CrossRefGoogle Scholar
  26. 26.
    R. H. Ewoldt and N. A. Bharadwaj, Rheol. Acta 52, 201 (2013).CrossRefGoogle Scholar
  27. 27.
    Z. Fahimi, C. P. Broedersz, T. H. S. van Kempen, D. Florea, G. W. M. Peters, H. M. Wyss, Rheol. Acta 53, 75 (2014).CrossRefGoogle Scholar
  28. 28.
    J. J. Stickel, J. S. Knutsen, and M. W. Liberatore, J. Rheol. 57, 1569 (2013).CrossRefGoogle Scholar
  29. 29.
    J. W. Swan, R. N. Zia, and J. F. Brady, J. Rheol. 58, 1 (2014).CrossRefGoogle Scholar
  30. 30.
    M. Wilhelm, Macromol. Mater. Eng. 287, 83 (2002).CrossRefGoogle Scholar
  31. 31.
    K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, J. Rheol. 49, 747 (2005).CrossRefGoogle Scholar
  32. 32.
    K. Atalik and R. Keunings, J. Non-Newtonian Fluid. Mech. 122 107 (2004).CrossRefGoogle Scholar
  33. 33.
    R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, J. Rheol. 52, 1427 (2008).CrossRefGoogle Scholar
  34. 34.
    S. Ilyin, V. Kulichikhin, and A. Malkin, Appl. Rheol. 24, 13653 (2014).Google Scholar
  35. 35.
    S. O. Ilyin, A. Y. Malkin, and V. G. Kulichikhin, Polym. Sci., Ser. A 56 (1), 98 (2014).CrossRefGoogle Scholar
  36. 36.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, NewYork, 1980).Google Scholar
  37. 37.
    A. Kostyuk, V. Ignatenko, N. Smirnova, T. Brantseva, S. Ilyin, S. Antonov, J. Adhes. Sci. Technol. 29 (17), 1831 (2015).CrossRefGoogle Scholar
  38. 38.
    N. B. Uriev, Russ. Chem. Rev. 73, 37 (2004).CrossRefGoogle Scholar
  39. 39.
    A. Y. Malkin, S. O. Ilyin, A. V. Semakov, and V. G. Kulichikhin, Soft Matter 8, 2607 (2012).CrossRefGoogle Scholar
  40. 40.
    S. O. Ilyin, A. Y. Malkin, V. G. Kulichikhin, A. Y. Shaulov, E. V. Stegno, A. A. Berlin, S. A. Patlazhan, Rheol. Acta 53, 467 (2014).CrossRefGoogle Scholar
  41. 41.
    K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, J. NonNewtonian Fluid. Mech. 107, 51 (2002).CrossRefGoogle Scholar
  42. 42.
    S. R. Raghavan and S. A. Khan, J. Colloid Interface Sci. 185, 57 (1997).CrossRefGoogle Scholar
  43. 43.
    F. Yziquel, P. J. Carreau, and P. A. Tanguy, Rheol. Acta 38, 14 (1999).CrossRefGoogle Scholar
  44. 44.
    N. B. Uriev, Prot. Met. Phys. Chem. Surf. 46, 1 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations