Advertisement

Polymer Science Series A

, Volume 57, Issue 5, pp 565–572 | Cite as

Effects of ultrasound on the conformational and crystallization behavior of isotactic polypropylene polymerized with different Ziegler—Natta catalyst

  • Shaohua Chen
  • Yuansen Liu
  • Tao Zeng
  • Nannan Duan
  • Zhi Wang
  • Luoxin Wang
  • Hua Wang
  • Changan XuEmail author
  • Jian KangEmail author
Structure and Properties

Abstract

Using different Ziegler—Natta catalysts, we have prepared two samples of isotactic polypropylene with similar molecular weight and average isotacticity, but different stereo-defect distributions. The influence of ultrasonic irradiation on the conformation and crystallization behavior of those samples were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and Fourier transform infrared spectroscopy. The ultrasonic treatment induced a decrease in the degree of crystalline perfection and a wider distribution range of the crystalline perfection of polypropylene. Meanwhile, the crystal particles pack looser and the crystallite size decreased under the influence of ultrasonic irradiation. On the conformation aspect, the molecular movement in polypropylene became more intensive, the molecular entanglement was reduced when ultrasound was applied. Moreover, it was found that the uniformity of stereo-defect distribution also played important role in determining the conformation and crystallization behavior of polypropylene samples irradiated by ultrasound.

Keywords

Polymer Science Series Monomer Unit Crystallization Behavior WAXD Ultra Sound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Boukerrou, J. Duchet, S. Fellahi, and H. Sautereau, J. Appl. Polym. Sci. 105, 1420 (2007).CrossRefGoogle Scholar
  2. 2.
    Q. Zheng, Y. Shangguan, L. Tong, and M. Peng, J. Appl. Polym. Sci. 94, 2187 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. Chen and H. Li, Polym. Eng. Sci. 44, 1509 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Cao, M. Xiang, and H. Li, Appl. Polym. Sci. 84, 1956 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Cao and H. Li, Polym. Eng. Sci. 42, 1534 (2002).CrossRefGoogle Scholar
  6. 6.
    J. Kang, J. Chen, Y. Cao, and H. Li, Polymer 51, 249 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Lapshin, S. K. Swain, and A. I. Isayev, Polym. Eng. Sci. 48, 1584 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Choi and A. I. Isayev, Rubber Chem. Technol. 85, 14 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Choi and A. I. Isayev, Rubber Chem. Technol. 86, 109 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Huang and A. I. Isayev, RSC Adv. 4, 38877 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Zhong, A. I. Isayev, and K. Huang, Polymer 55, 1745 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Zhong and A. I. Isayev, J. Appl. Polym. Sci. 132, 5 (2015).Google Scholar
  13. 13.
    J. Kang, J. Li, S. Chen, S. Zhu, H. Li, Y. Cao, F. Yang, and M. Xiang, J. Appl. Polym. Sci. 130, 25 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Kang, H. Peng, B. Wang, J. Chen, F. Yang, Y. Cao, H. Li, and M. Xiang, J. Macromol. Sci. Part B: Phys. 54 (2): 172 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Kang, B. Xiong, D. Liu, Y. Cao, J. Chen, F. Yang, and M. Xiang, J. Polym. Res. 21, 485, 1 (2014).CrossRefGoogle Scholar
  16. 16.
    T. Wu, M. Xiang, Y. Cao, J. Kang, and F. Yang, RSC Adv. 81, 43012 (2014).CrossRefGoogle Scholar
  17. 17.
    G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, and G. Moraglio, J. Am. Chem. Soc. 77, 1708 (1955).CrossRefGoogle Scholar
  18. 18.
    J. Karger-Kocsis, S. D. Wanjale, T. Abraham, T. Bárány, and A. A. Apostolov, J. Appl. Polym. Sci. 115, 684 (2010).CrossRefGoogle Scholar
  19. 19.
    Á. Kmetty, T. Bárány, and J. Karger-Kocsis, Compos. Sci. Technol. 73, 72 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Varga, J. Macromol. Sci. Part B 41, 1121 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Varga and A. Menyhárd, Macromolecules 40, 2422 (2007).CrossRefGoogle Scholar
  22. 22.
    Z. Horvath, S. I. Sajó, K. Stoll, and J. Varga, eXPRESS Polym. Lett. 4, 101 (2010).CrossRefGoogle Scholar
  23. 23.
    D. L. Dorset, M. P. McCourt, S. Kopp, M. Schumacher, T. Okihara, and B. Lotz, Polymer 39, 6331(1998).CrossRefGoogle Scholar
  24. 24.
    B. Lotz, Eur. Phys. J. E: Soft Matter 3, 185 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Bruckner, S. V. Meille, V. Petraccone, and B. Pirozzi, Prog. Polym. Sci. 16, 361 (1991).CrossRefGoogle Scholar
  26. 26.
    D. R. Ferro, S. V. Meille, and S. Brückner, Macromolecules 31, 6926 (1998).CrossRefGoogle Scholar
  27. 27.
    S. Brückner, P. J. Phillips, K. Mezghani, and S. V. Meille, Macromol. Rapid Commun. 18, 1 (1997).CrossRefGoogle Scholar
  28. 28.
    R. Krache, R. Benavente, J. M. López-Majada, J. M. Pereña, M. L. Cerrada, and E. Pérez, Macromolecules 40, 6871 (2007).CrossRefGoogle Scholar
  29. 29.
    K. H. Syed, S. H. Gulrez, M. E. A. Mohsin, and S. M. Al-Zahrani, J. Polym. Res. 20, 265 (2013).CrossRefGoogle Scholar
  30. 30.
    Á. Kmetty, T. Bárány, and J. Karger-Kocsis, Prog. Polym. Sci. 35, 1288 (2010).CrossRefGoogle Scholar
  31. 31.
    J. Kang, J. Zhang, Z. Chen, F. Yang, J. Chen, Y. Cao, and M. Xiang, J. Polym. Res. 21, 506 (2014).CrossRefGoogle Scholar
  32. 32.
    J. Kang, Z. Chen, J. Chen, F. Yang, G. Weng, Y. Cao, and M. Xiang, Thermochim. Acta 599, 42 (2015).CrossRefGoogle Scholar
  33. 33.
    J. Kang, Z. Chen, T. Zhou, F. Yang, J. Chen, Y. Cao, and M. Xiang, J. Polym. Res. 21, 384 (2014).CrossRefGoogle Scholar
  34. 34.
    J. Kang, J. He, Z. Chen, F. Yang, J. Chen, Y. Cao, and M. Xiang, Polym. Advan. Technol. 26 (1): 32 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Kang, G. Weng, Z. Chen, J. Chen, Y. Cao, F. Yang, and M. Xiang, RSC Adv. 56, 29514 (2014).CrossRefGoogle Scholar
  36. 36.
    T. Wu, M. Xiang, Y. Cao, J. Kang, and F. Yang, RSC Adv. 4, 36689 (2014).CrossRefGoogle Scholar
  37. 37.
    Q. Zhang, Z. Chen, B. Wang, J. Chen, F. Yang, J. Kang, Y. Cao, M. Xiang, and H. Li, J. Appl. Polym. Sci. 132 (4): 41355 (2015).CrossRefGoogle Scholar
  38. 38.
    J. Kang, J. Gai, J. Li, S. Chen, H. Peng, B. Wang, Y. Cao, H. Li, J. Chen, F. Yang, and M. Xiang, J. Polym. Res. 20, 70 (2013).CrossRefGoogle Scholar
  39. 39.
    J. Kang, H. Peng, B. Wang, Z. Chen, J. Li, J. Chen, Y. Cao, H. Li, F. Yang, and M. Xiang, J. Appl. Polym. Sci. 131, 40115 (2014).CrossRefGoogle Scholar
  40. 40.
    J. Varga and J. Karger.-Kocsis, J. Polym. Sci., Part B: Polym. Phys. 34, 657 (1996).CrossRefGoogle Scholar
  41. 41.
    C. Mathieu, A. Thierry, J. C. Wittmann, and B. Lotz, J. Polym. Sci., Part B: Polym. Phys. 40, 2504 (2002).CrossRefGoogle Scholar
  42. 42.
    X. Chen, R. Ozisik, S. K. Kumar, and P. Choi, J. Polym. Sci., Part B: Polym. Phys. 45, 3349 (2007).CrossRefGoogle Scholar
  43. 43.
    J. Kang, Y. Cao, H. Li, J. Li, S. Chen, F. Yang, and M. Xiang, J. Polym. Res. 19, 37 (2012).CrossRefGoogle Scholar
  44. 44.
    J. Kang, F. Yang, T. Wu, H. Li, Y. Cao, and M. Xiang, Eur. Polym. J. 48, 425 (2012).CrossRefGoogle Scholar
  45. 45.
    J. Kang, F. Yang, T. Wu, H. Li, D. Liu, Y. Cao, and M. Xiang, J. Appl. Polym. Sci. 125, 3076 (2012).CrossRefGoogle Scholar
  46. 46.
    J. Kang, J. Li, S. Chen, H. Peng, B. Wang, Y. Cao, H. Li, J. Chen, J. Gai, F. Yang, and M. Xiang, J. Appl. Polym. Sci. 129, 2663 (2013).CrossRefGoogle Scholar
  47. 47.
    H. Peng, B. Wang, J. Gai, J. Chen, F. Yang, Y. Cao, H. Li, J. Kang, and M. Xiang, J. Appl. Polym. Sci. 131, 40027 (2014).Google Scholar
  48. 48.
    H. Peng, B. Wang, J. Gai, J. Chen, F. Yang, Y. Cao, H. Li, J. Kang, and M. Xiang, Polym. Adv. Technol. 25 (12): 1464 (2014).CrossRefGoogle Scholar
  49. 49.
    J. Kang, B. Wang, H. Peng, J. Chen, Y. Cao, H. Li, F. Yang, and M. Xiang, Polym. Bull. 71, 563 (2014).CrossRefGoogle Scholar
  50. 50.
    V. Busico and R. Cipullo, Prog. Polym. Sci. 26, 443 (2001).CrossRefGoogle Scholar
  51. 51.
    M. Xie, J. Chen, and H. Li, J. Appl. Polym. Sci. 111, 890 (2009).Google Scholar
  52. 52.
    J. Chen, Y. Chen, H. Li, S. Lai, and J. Jow, Ultrason. Sonochem. 17, 66 (2010).CrossRefGoogle Scholar
  53. 53.
    J. Kang, J. Chen, Y. Cao, and H. Li, Polymer 51, 249 (2010).CrossRefGoogle Scholar
  54. 54.
    J. X. Li, W. L. Cheung, and D. Jia, Polymer 40, 1219 (1999).CrossRefGoogle Scholar
  55. 55.
    Z. Chen, B. Wang, J. Kang, H. Peng, J. Chen, F. Yang, Y. Cao, H. Li, and M. Xiang, Polym. Adv. Technol. 25, 353 (2014).CrossRefGoogle Scholar
  56. 56.
    J. Kang, J. He, Z. Chen, H. Yu, J. Chen, F. Yang, Y. Cao, M. Xiang, J. Therm. Anal. Calorim. 119 (3): 1769 (2015)CrossRefGoogle Scholar
  57. 57.
    J. Kang, B. Wang, H. Peng, J. Li, J. Chen, J. Gai, Y. Cao, H. Li, F. Yang, and M. Xiang, Polym. Adv. Technol. 25, 97 (2014).CrossRefGoogle Scholar
  58. 58.
    Y. Cong, Z. Hong, Z. Qi, W. Zhou, H. Li, H. Liu, W. Chen, X. Wang, and L. Li, Macromolecules 43, 9859 (2010).CrossRefGoogle Scholar
  59. 59.
    J. Zhou, L. Li, and J. Lu, Polymer 47, 261 (2006).CrossRefGoogle Scholar
  60. 60.
    L. Chen, Y. Wang, X. Zhu, and D. Yan, Polym. Int. 53, 131 (2004).CrossRefGoogle Scholar
  61. 61.
    Z. Su, H. Wang, J. Dong, X. Zhang, X. Dong, Y. Zhao, J. Yu, C. C. Han, D. Xu, and D. Wang, Polymer 48, 870 (2007).CrossRefGoogle Scholar
  62. 62.
    J. Zhao, Z. Peng, J. Zhang, and G. Li, Polym. Bull. 67, 1649 (2011).CrossRefGoogle Scholar
  63. 63.
    Y. Cong, Z. Hong, W. Zhou, W. Chen, F. Su, H. Li, X. Li, K. Yang, X. Yu, Z. Qi, and L. Li, Macromolecules 45, 8674 (2012).CrossRefGoogle Scholar
  64. 64.
    H. An, B. Zhao, Z. Ma, C. Shao, X. Wang, Y. Fang, L. Li, and Z. Li, Macromolecules 40, 4740 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Shaohua Chen
    • 1
  • Yuansen Liu
    • 2
  • Tao Zeng
    • 1
  • Nannan Duan
    • 1
  • Zhi Wang
    • 1
  • Luoxin Wang
    • 1
  • Hua Wang
    • 1
    • 3
  • Changan Xu
    • 1
    • 2
    Email author
  • Jian Kang
    • 4
    Email author
  1. 1.College of Materials Science and EngineeringWuhan Textile UniversityWuhanChina
  2. 2.Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of OceanographyState Oceanic AdministrationXiamenChina
  3. 3.Sichuan Textile Research InstituteChengdu 6China
  4. 4.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations