Polymer Science Series A

, Volume 57, Issue 4, pp 494–500 | Cite as

Viscosity of polyacrylonitrile solutions: The effect of the molecular weight

  • S. O. Ilyin
  • E. V. Chernikova
  • Yu. V. Kostina
  • V. G. Kulichikhin
  • A. Ya. Malkin


The copolymer of acrylonitrile with methyl acrylate and itaconic acid (93: 5.7: 1.3) is synthesized via free-radical copolymerization. For solutions of the initial copolymer and its 12 fractions in dimethyl sulfoxide, viscosities are measured in a wide shear-stress range. The viscosity behavior of 10% solutions is examined in more detail, and the rheological studies of several fractions are performed in the concentration interval from 5 to 20%. All solutions exhibit weak non-Newtonian behavior. This makes it possible to determine the zero-shear viscosity. The dependences of this viscosity on the number-average and weight-average molecular masses for the equiconcentrated solutions obey an exponential law with the same exponent, equal to 2.3. The macromolecules of copolymers are inclined toward association. For low-molecular-mass fractions, this effect is the most pronounced.


Molecular Mass Polymer Science Series Itaconic Acid Methyl Acrylate Molecular Mass Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Flory, J. Chem. Phys. 10, 51 (1942).CrossRefGoogle Scholar
  2. 2.
    V. E. Dreval, A. Ya. Malkin, G. V. Vinogradov, and A. A. Tager, Eur. Polym. J. 9(1), 85 (1973).CrossRefGoogle Scholar
  3. 3.
    S. P. Papkov, Phase Equilibrium in Polymer-Solvent System (Khimiya, Moscow, 1981) [in Russian].Google Scholar
  4. 4.
    V. N. Tsvetkov, V. E. Eskin, and S. Ya Frenkel’, Structure of Macromolecules in Solution (Nauka, Moscow, 1964).Google Scholar
  5. 5.
    A. Ya. Malkin and A. Isayev, Rheology: Concepts, Methods and Applications (Toronto: ChemTec (2012).Google Scholar
  6. 6.
    A. Ya. Malkin, Rheol. Acta. 12(3–4), 486 (1973).CrossRefGoogle Scholar
  7. 7.
    S. P. Papkov, V. G. Kulichikhin, V. D. Kalmykova, and A. Ya. Malkin, J. Polym. Sci., Polym. Phys. Ed. 12(9), 1753 (1974).CrossRefGoogle Scholar
  8. 8.
    S. P. Papkov and V. G. Kulichikhin, Liquid-Crystalline State of Polymers (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  9. 9.
    A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46(1), 257 (2013).CrossRefGoogle Scholar
  10. 10.
    S. O. Ilyin, A. Ya. Malkin, and V. G. Kulichikhin, Polym. Sci., Ser. A 55(8), 503 (2013).CrossRefGoogle Scholar
  11. 11.
    A. L. Yarin, B. Pourdeyhimi, and S. Ramakrishna, Fundamentals and Applications of Micro-and Nanofibers (Cambridge Univ. Press, Cambridge, 2014).CrossRefGoogle Scholar
  12. 12.
    M. Bercea, S. Morariu, and C.-E. Brunchi, Int. J. Thermophys. 30, 1411 (2009).CrossRefGoogle Scholar
  13. 13.
    L. J. Tan, D. Pan, and N. Pan, Polym. Adv. Technol. 22, 2279 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Liu, H. Jiang, W. Du, and D. Pan, Fibers Polym. 13, 846 (2012).CrossRefGoogle Scholar
  15. 15.
    A. J. Wan and L. J. Tan, Prog. Chem. 24, 370 (2012).Google Scholar
  16. 16.
    Q. Y. Wu, X. N. Chen, L. S. Wan, and Z. K. Xu, J. Phys. Chem. B 116, 8321 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Eom and B. C. Kim, Polymer 55, 2570 (2014).CrossRefGoogle Scholar
  18. 18.
    L. Tan, J. Pan, and A. Wan, Colloid Polym. Sci. 290, 289 (2012).CrossRefGoogle Scholar
  19. 19.
    N. I. Kuz’min, A. V. Makarov, and T. I. Podol’skaya, Fibre Chem. 43, 104 (2011).CrossRefGoogle Scholar
  20. 20.
    N. M. Bol’bit, E. A. Dubova, V. R. Duflot, and V. A. Chevychelov, Polym. Sci., Ser. A 53, 289 (2011).CrossRefGoogle Scholar
  21. 21.
    E. V. Chernikova, S. M. Kishilov, A. V. Plutalova, Y. V. Kostina, G. N. Bondarenko, A. A. Baskakov, S. O. Il’in, A. Y. Nikolaev, Polym. Sci., Ser. B 56(5), 553 (2014).CrossRefGoogle Scholar
  22. 22.
    E. A. Busyreva, I. I. Ryskina, V. P. Viryukov, and A. S. Mramornova, Fibre Chem. 23(3), 177 (1991).CrossRefGoogle Scholar
  23. 23.
    A. Ya. Malkin, J. Non-Newtonian Fluid Mech. 192, 48 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Ya. Malkin, N. K. Blinova, G. V. Vinogradov, M. P. Zabugina, O. Yu. Sabsai, V. C. Shalganova, I. Yu. Kirchevskaya, V. P. Shatalov, Eur. Polym. J. 10(5), 445 (1974).CrossRefGoogle Scholar
  25. 25.
    A. A. Tager and V. E. Dreval, Rheol. Acta 9, 517 (1970).CrossRefGoogle Scholar
  26. 26.
    W. W. Graessley, Polymer 21(3), 258 (1980).CrossRefGoogle Scholar
  27. 27.
    M. L. Huggins, J. Am. Chem. Soc. 64(11), 2716 (1942).CrossRefGoogle Scholar
  28. 28.
    E. O. Kraemer, Ind. Eng. Chem. 30(10), 1200 (1938).CrossRefGoogle Scholar
  29. 29.
    V. E. Dreval, A. Ya. Malkin, and G. O. Botvinnik, J. Polym. Sci., Polym. Phys. Ed. 11(6), 1055 (1973).Google Scholar
  30. 30.
    P. Doty, H. Wagner, and S. Singer, J. Phys. Chem. 51(1), 32 (1947).CrossRefGoogle Scholar
  31. 31.
    B. Hammouda, D. L. Ho, and S. Kline, Macromolecules 37, 6932 (2004).CrossRefGoogle Scholar
  32. 32.
    S. O. Ilyin, A. Y. Malkin, V. G. Kulichikhin, Y. I. Denisova, L. B. Krentsel, G. A. Shandryuk, A. D. Litmanovich, E. A. Litmanovich, G. N. Bondarenko, Y. V. Kudryavtsev, Macromolecules 47(14), 4790 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • E. V. Chernikova
    • 2
  • Yu. V. Kostina
    • 1
  • V. G. Kulichikhin
    • 1
  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations