Polymer Science Series A

, Volume 57, Issue 2, pp 239–250 | Cite as

Effect of the side-arm architecture on the conformational properties of bottle brushes

Theory and Simulation

Abstract

The conformational properties of bottle brushes with identical backbone lengths, grafting densities, and molecular masses of side arms, but different architectures of the arms, are studied via the Langevin dynamics method within the coarse-grained model. Volume interactions correspond to athermal-solvent conditions. The sizes and shapes of a whole macromolecule and its backbone and the mutual arrangement and deformation of the side arms are determined. The induced persistence length of the brush backbone, a property that characterizes the rigidifying effect of interactions between side arms, is estimated. It is shown that, for the considered model parameters, the induced persistence length is independent of the side-arm architecture, in agreement with predictions obtained earlier in the mean-field approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Yuan, A. H. E. Müller, K. Matyjaszewski, and S. S. Sheiko, “Molecular Brushes” in Polymer Science: A Comprehensive Reference. Volume 6: Macromolecular Architectures and Soft Nano-objects, Ed. by K. Matyjaszewski and Möller (Elsevier, Amsterdam, 2012).Google Scholar
  2. 2.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, ACS Macro Lett., No. 1, 1166 (2012).Google Scholar
  3. 3.
    P. E. Theodorakis, H. -P. Hsu, W. Paul, and K. Binder, J. Chem. Phys. 135, 164903 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Rouault and O. V. Borisov, Macromolecules 29, 2605 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Saariaho, O. Ikkala, I. Szleifer, I. Ya. Erukhimovich, G. J. ten Brinke, Chem. Phys., No. 107, 3267 (1997).Google Scholar
  6. 6.
    M. Saariaho, I. Szleifer, O. Ikkala, and G. ten Brinke, Macromol. Theory Simul. 7, 211 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Subbotin, M. Saariaho, O. Ikkala, and G. ten Brinke, Macromolecules 33, 3447 (2000).CrossRefGoogle Scholar
  8. 8.
    H. -P. Hsu, W. Paul, and K. Binder, Macromolecules 43, 3094 (2010).CrossRefGoogle Scholar
  9. 9.
    J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys. 54, 5237 (1971).CrossRefGoogle Scholar
  10. 10.
    I. T. Todorov and W. Smith, The DL POLY 4 User Manual (STFC Daresbury Laboratory, Daresbury, Warrington, 2011), p. 44.Google Scholar
  11. 11.
    J. S. Klos and J. U. Sommer, Macromolecules 43(9), 4418 (2010).CrossRefGoogle Scholar
  12. 12.
    T. M. Birshtein and V. M. Amoskov, Polym. Sci., Ser. C 42(2), 172 (2000).Google Scholar
  13. 13.
    O. Kratky, and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).CrossRefGoogle Scholar
  14. 14.
    M. Saariaho, A. Subbotin, I. Szleifer, O. Ikkala, G. ten Brinke, Macromolecules 32, 4439 (1999).CrossRefGoogle Scholar
  15. 15.
    H. -P. Hsu, W. Paul, and K. Binder, Macromolecules 43, 3094 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher, A. Deffieux, A. Brulet, J. P. Cotton, Macromolecules 35, 8878 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Cloizeaux, Macromolecules 6, 404 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations