Advertisement

Polymer Science Series A

, Volume 57, Issue 1, pp 94–100 | Cite as

The temperature dependence and field dependence of the mobility of charge carriers in the multiple-trapping model with a Gaussian trap distribution

  • A. P. TyutnevEmail author
  • A. V. Nikerov
  • V. S. Saenko
  • B. L. Linetskii
Theory and Simulation

Abstract

The multiple-trapping model with a Gaussian trap distribution was used for the numerical analysis of the effects of nonequilibrium transport on the temperature dependence and field dependence of the mobility of carriers in a typical molecularly doped polymer. It was shown that, with allowance for the prescribed Poole-Frenkel-type field dependence of mobility under the conditions of nonequilibrium transport, the observed decrease in the effective energy of disorder may be explained as a compensation effect with no change in the initial energy distribution of hopping centers.

Keywords

Charge Carrier Polymer Science Series Field Dependence Flight Experiment Flight Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography (Marcel Dekker, New York, 1998).Google Scholar
  2. 2.
    D. S. Weiss and M. Abkowitz, Chem. Rev. 110, 479 (2010).CrossRefGoogle Scholar
  3. 3.
    L. B. Schein, Russ. J. Electrochem. 48(3), 283 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Scher and E. W. Montroll, Phys. Rev. B 12(6), 2455.Google Scholar
  5. 5.
    V. I. Arkhipov, M. S. Iovu, A. I. Rudenko, and S. D. Shutov, Phys. Status Solidi A 54(1), 67 (1979).CrossRefGoogle Scholar
  6. 6.
    H. Bässler, Phys. Status Solidi B 107(1), 9 (1981).CrossRefGoogle Scholar
  7. 7.
    H. Bässler, Phys. Status Solidi B 175(1), 15 (1993).CrossRefGoogle Scholar
  8. 8.
    S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, A. V. Vannikov, Phys. Rev. Lett. 81(20), 4472 (1998).CrossRefGoogle Scholar
  9. 9.
    L. B. Schein and A. P. Tyutnev, J. Phys. Chem. C 112, 7295 (2008).CrossRefGoogle Scholar
  10. 10.
    S. V. Novikov and A. V. Vannikov, J. Phys. Chem. C 113, 2532 (2009).CrossRefGoogle Scholar
  11. 11.
    D. H. Dunlap, L. B. Schein, A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, P. E. Parris, and D. S. Weiss, J. Phys. Chem. C 114, 9076 (2010).CrossRefGoogle Scholar
  12. 12.
    A. P. Tyutnev, R. Sh. Ikhsanov, V. S. Saenko, and E. D. Pozhidaev, Chem. Phys. 404, 88 (2012).CrossRefGoogle Scholar
  13. 13.
    A. P. Tyutnev, R. Sh. Ikhsanov, E. P. Grach, I. V. Kochetov, V. S. Saenko, and E. D. Pozhidaev, Polym. Sci., Ser. A 55(2), 127 (2013).CrossRefGoogle Scholar
  14. 14.
    A. P. Tyutnev, D. S. Weiss, D. H. Dunlap, and V. S. Saenko, J. Phys. Chem. C 118, 5150 (2014).CrossRefGoogle Scholar
  15. 15.
    L. B. Schein, A. Rosenberg, and S. L. Rice, J. Appl. Phys. 60, 4286 (1986).CrossRefGoogle Scholar
  16. 16.
    J. X. Mack, L. B. Schein, and A. Peled, Phys. Rev. B 39, 7500 (1989).CrossRefGoogle Scholar
  17. 17.
    L. B. Schein, J. C. Scott, L. Th. Pautmeier, and R. H. Young, Mol. Cryst. Liq. Cryst. 228, 175 (1993).CrossRefGoogle Scholar
  18. 18.
    A. P. Tyutnev, V. S. Saenko, and E. D. Pozhidaev, Chem. Phys. 389, 75 (2011).CrossRefGoogle Scholar
  19. 19.
    L. B. Schein and A. P. Tyutnev, J. Phys. Chem. C 115, 6939 (2011).CrossRefGoogle Scholar
  20. 20.
    L. B. Schein, V. S. Saenko, E. D. Pozhidaev, A. P. Tyutnev, and D. S. Weiss, J. Phys. Chem. C 113, 1067 (2009).CrossRefGoogle Scholar
  21. 21.
    P. M. Borsenberger, J. Appl. Phys. 68, 6263 (1990).CrossRefGoogle Scholar
  22. 22.
    A. Peled, L. B. Schein, and D. Glatz, Phys. Rev. B 41, 10835 (1990).CrossRefGoogle Scholar
  23. 23.
    J. A. Sinicropi, L.-B. Lin, P. M. Borsenberger, and E. H. Magin, Jpn. J. Appl. Phys. 36, 7259 (1997).CrossRefGoogle Scholar
  24. 24.
    P. M. Borsenberger, J. R. Cowdery-Corvan, E. H. Magin, and J. A. Sinicropi, Thin Solid Films 307, 215 (1997).CrossRefGoogle Scholar
  25. 25.
    P. M. Borsenberger, E. H. Magin, J. A. Sinicropi, and L. -B. Lin, Jpn. J. Appl. Phys. 37, 166 (1998).CrossRefGoogle Scholar
  26. 26.
    W. D. Gill, J. Appl. Phys. 43, 5033 (1972).CrossRefGoogle Scholar
  27. 27.
    A. Peled and L. B. Schein, Phys. Scr. 44, 304 (1991).CrossRefGoogle Scholar
  28. 28.
    D. H. Dunlap, V. M. Kenkre, and P. E. Parris, J. Imaging Sci. Technol. 43(5), 437 (1999).Google Scholar
  29. 29.
    A. P. Tyutnev, A. V. Nikerov, A. E. Abrameshin, and V. S. Saenko, Polym. Sci., Ser. A 56, 719 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. P. Tyutnev
    • 1
    Email author
  • A. V. Nikerov
    • 1
  • V. S. Saenko
    • 1
  • B. L. Linetskii
    • 1
  1. 1.Higher School of EconomicsNational Research UniversityMoscowRussia

Personalised recommendations