Advertisement

Polymer Science Series A

, Volume 57, Issue 1, pp 13–23 | Cite as

Effect of titanium dioxide and silicon dioxide on the thermal stability of isotactic polypropylene deformed via solvent-crazing mechanism

  • E. S. Trofimchuk
  • V. V. PolyanskayaEmail author
  • M. A. Moskvina
  • T. E. Grokhovskaya
  • N. I. Nikonorova
  • A. L. Strembitskaya
  • A. L. Volynskii
  • N. F. Bakeev
Structure and Properties

Abstract

The effect of a finely divided structure created via the mechanism of delocalized crazing on the processes of thermo-oxidative degradation of isotactic polypropylene has been studied. It has been shown that the thermal stability of porous films is reduced at relatively low temperatures (up to 155°C) and they become brittle. In contrast, their degradation rate at temperatures above 400°C is two times below that for the original, nonporous films because of the formation of crosslinked network structures and carbonization. The formation of titania and silica nanoparticles via hydrolytic decomposition of the respective alkoxides directly in the pore space of the polypropylene matrix substantially alters its thermal stability, depending on the precursor concentration, the extent of hydrolysis, and the composite structure. The greatest increases in the mass-loss-onset temperature and the temperature of the maximum mass-loss rate (by 80–100°C) have been observed for the composites with 40 wt % titanium dioxide. It has been assumed that the enhancement of thermal stability is due to the significant concentration of the products of incomplete hydrolysis of titanium alkoxy derivatives. The silica particles, in contrast, exert a signification influence on the thermo-oxidative-degradation processes in polypropylene at their low concentration (up to 5 wt %), a result that is associated with the structural features of such composites.

Keywords

Polymer Science Series Mass Loss Rate Scan Ning Electron Microscopy Isotactic Polypropylene Titanium Dioxide Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Aseeva and G. E. Zaikov, Combustion of Polymeric Materials (Nauka, Moscow, 1981).Google Scholar
  2. 2.
    D. Tripathi, Practical Guide to Polypropylene (Rapra Technology Ltd., Shrewsbury, 2002), p. 104.Google Scholar
  3. 3.
    Yu. A. Mikhailin, Thermal stability of Polypropylene (heat-, thermal-, and fire resistance of polymer materials) (Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2011) [in Russian].Google Scholar
  4. 4.
    H. Zweifel, Plastics Additives Handbook (Hanser-Gardner Publ., Hanser, 2005; Professiya, St. Petersburg, 2010).Google Scholar
  5. 5.
    Sh. Zhang and A. R. Horrocks, Prog. Polym. Sci. 28(11), 1517 (2003).CrossRefGoogle Scholar
  6. 6.
    V. Mittal, Thermally Stable and Flame Retardand Polymer Nanocomposites (Cambridge Univ. Press, New York, 2011).CrossRefGoogle Scholar
  7. 7.
    M. Xanthos, Functional Fillers for Plastics (WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, 2005; Nauchnye osnovy i tekhnologii, St. Petersburg, 2010).CrossRefGoogle Scholar
  8. 8.
    C. D. Pavlidou, Prog. Polym. Sci. 33, 1119 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Golebiewski and A. Galeski, Compos. Sci. Technol. 67(15–16), 3442 (2007).CrossRefGoogle Scholar
  10. 10.
    B. K. Kandola, G. Smart, A. R. Horrocks, P. Joseph, S. Zhang, T. R. Hull, J. Ebdon, B. Hunt, and A. Cook, J. Appl. Polym. Sci. 108, 816 (2008).CrossRefGoogle Scholar
  11. 11.
    H. Palza, R. Vergara, and P. Zapata, Compos. Sci. Technol. 71, 535 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Manangan, S. Shawaphun, D. Sangsansiri, J. Changcharoen, and S. Wacharawichanant, Sci. J. Ubon Ratchathani Univ. 1(2), 14 (2010).Google Scholar
  13. 13.
    S. K. Esthappan, S. K. Kuttappan, and R. Joseph, Polym. Degrad. Stab 97(4), 615 (2012).CrossRefGoogle Scholar
  14. 14.
    S. K. Esthappan, S. K. Kuttappan, and R. Joseph, Mater. Des. 37, 537 (2012).CrossRefGoogle Scholar
  15. 15.
    Md. F. Mina, S. Seema, R. Matin, Md. J. Rahaman, R. B. Sarker, Md. A. Gafur, and Md. Abu H. Bhuiyan, Polym. Degrad. Stab. 94(2), 183 (2009).CrossRefGoogle Scholar
  16. 16.
    A. L. Volynskii and N. F. Bakeev, Structural Self-Organization of Amorphous Polymers (Fizlit, Moscow, 2005) [in Russian].Google Scholar
  17. 17.
    D. V. Bagrov, A. Yu. Yarysheva, E. G. Rukhlya, A. L. Yarysheva, L. M. Volynskii, and N. F. Bakeev, Journal of Microscopy 253(2), 151 (2014).CrossRefGoogle Scholar
  18. 18.
    A. V. Volkov, V. V. Polyanskaya, M. A. Moskvina, A. I. Dement’ev, A. L. Volynskii, and N. F. Bakeev, Dokl. Phys. Chem. 445(1), 117 (2012).CrossRefGoogle Scholar
  19. 19.
    A. V. Volkov, V. V. Polyanskaya, M. A. Moskvina, S. B. Zezin, A. I. Dement’ev, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 7(7–8), 377 (2012).CrossRefGoogle Scholar
  20. 20.
    A. V. Volkov, V. V. Polyanskaya, M. A. Moskvina, A. A. Tunyan, S. B. Zezin, A. I. Dement’ev, A. L. Volynskii, and N. F. Bakeev, Colloid J. 75(1), 40 (2013).CrossRefGoogle Scholar
  21. 21.
    E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, A. S. Eliseev, E. V. Semenova, I. B. Meshkov, V. V. Kazakova, A. M. Muzafarov, A. L. Volynskii, and N. F. Bakeev, Polym. Sci., Ser. A, 49(10), 1107 (2007).CrossRefGoogle Scholar
  22. 22.
    E. S. Trofimchuk, E. A. Nesterova, I. B. Meshkov, N. I. Nikonorova, A. M. Muzafarov, and N. Ph. Bakeev, Macromolecules 40(5), 9111 (2007).CrossRefGoogle Scholar
  23. 23.
    E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, A. M. Muzafarov, I. B. Meshkov, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 4(9–10), 736 (2009).CrossRefGoogle Scholar
  24. 24.
    E. S. Trofimchuk, M. Yu. Yablokova, N. I. Nikonorova, A. V. Antonov, A. L. Volynskii, and N. F. Bakeev, Polym. Sci., Ser. B 43(7–8), 190 (2001).Google Scholar
  25. 25.
    E. S. Trofimchuk and M. Yu. Yablokova, Polym. Degrad. Stab 74(2), 291 (2001).CrossRefGoogle Scholar
  26. 26.
    A. L. Volynskii, O. V. Arzhakova, A. L. Yarysheva, and N. F. Bakeev, Polym. Sci., Ser. B 42(3), 70 (2000).Google Scholar
  27. 27.
    V. Yu. Repkin, Candidate’s Dissertation in Engineering (LTI im. Lensoveta, Leningrad, 1985).Google Scholar
  28. 28.
    N. M. Emanuel’ and A. L. Buchachenko, Chemical Physics of Aging and Stabilization of Polymers (Nauka, Moscow, 1982) [in Russian].Google Scholar
  29. 29.
    Yu. A. Mikheev and G. E. Zaikov, Russ. Chem. Rev. 69(3), 231 (2000).CrossRefGoogle Scholar
  30. 30.
    H. Z. Y. Han, T. C. B. McLeish, R. A. Duckett, N. J. Ward, A. F. Johnson, A. M. Donald, and M. Butler, Macromolecules 31, 1348 (1998).CrossRefGoogle Scholar
  31. 31.
    N. Ya. Turova, E. P. Turevskaya, V. G. Kessler, and M. I. Yanovskaya, The Chemistry of Metal Alkoxides (Kluwer Academic Publ., New York, Boston, Gordrecht, London, Moscow, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. S. Trofimchuk
    • 1
  • V. V. Polyanskaya
    • 1
    Email author
  • M. A. Moskvina
    • 1
  • T. E. Grokhovskaya
    • 1
  • N. I. Nikonorova
    • 1
  • A. L. Strembitskaya
    • 1
  • A. L. Volynskii
    • 1
  • N. F. Bakeev
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations