Polymer Science Series A

, Volume 56, Issue 6, pp 798–811 | Cite as

Phase state and rheology of polyisobutylene mixtures with decyl surface modified silica nanoparticles

  • E. A. Karpukhina
  • S. O. Il’in
  • V. V. Makarova
  • I. B. Meshkov
  • V. G. Kulichikhin
80th Anniversary of N.A. Platé

Abstract

The miscibility of linear polyisobutylene and silica nanoparticles with surfaces modified by decyl groups is studied. The phase state of these systems corresponds to the amorphous equilibrium and may be described by a binodal with the UCST. As the radius of the inorganic core of nanoparticles and the molecular mass of polyisobutylene increase, the insolubility region on the phase diagram becomes wider. The addition of nanoparticles to the polymer leads to decreases in the viscoelastic characteristics of homogeneous media and provides the non-Newtonian behavior of the composition in the two-phase region. Shear deformation causes shifts of the phase equilibrium lines in the direction depended on the sizes of the nanoparticles.

Keywords

Phase Diagram Shear Rate Storage Modulus Polymer Science Series Silica Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Xanthos, Functional Fillers for Plastics (Wiley-VCH Verlag, Berlin, 2010).CrossRefGoogle Scholar
  2. 2.
    F. Gao, Advances in Polymer Nanocomposites (Wood-head Publ., Cambridge, 2012).CrossRefGoogle Scholar
  3. 3.
    L. Nicolais and G. Carotenuto, Metal-Polymer Nanocomposites (Wiley, Hoboken, 2005).Google Scholar
  4. 4.
    V. Favier, H. Chanzy, and J. Y. Cavaille, Macromolecules 28(18), 6365 (1995).CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, S. Yu, C. Wang, et al., Chem. Commun. 13, 1229 (1999).CrossRefGoogle Scholar
  6. 6.
    R. A. Vaia, B. B. Sauer, O. K. Tse, and E. P. Giannelis, J. Polym. Sci., Polym. Phys. Ed. 35(1), 59 (1997).CrossRefGoogle Scholar
  7. 7.
    M. Moniruzzaman and K. I. Winey, Macromolecules 39(16), 5194 (2006).CrossRefGoogle Scholar
  8. 8.
    M. S. Wang and T. J. Pinnavaia, Chem. Mater. 6(4), 468 (1994).CrossRefGoogle Scholar
  9. 9.
    P. Podsiadlo, A. K. Kaushik, E. M. Arruda, et al., Science 318(5847), 80 (2007).CrossRefGoogle Scholar
  10. 10.
    E. P. Giannelis, Appl. Organomet. Chem. 12, 675 (1998).CrossRefGoogle Scholar
  11. 11.
    T. Kashiwagi, F. Du, J. F. Douglas, et al., Nature Mater. 4, 928 (2005).CrossRefGoogle Scholar
  12. 12.
    R. Gangopadhyay and A. De, Chem. Mater. 12(3), 608 (2000).CrossRefGoogle Scholar
  13. 13.
    R. A. Vaia, S. Vasudevan, W. Krawiec, et al., Adv. Mater. 7(2), 154 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Zou, S. Wu, and J. Shen, Chem. Rev. 108(9), 3893 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Tanahashi, Materials 3(3), 1593 (2010).CrossRefGoogle Scholar
  16. 16.
    O. Aso, J. I. Eguiazarbal, and J. Nazarbal, Compos. Sci. Technol 67, 2854 (2007).CrossRefGoogle Scholar
  17. 17.
    H. Sertchook, H. Elimelech, C. Makarov, et al., J. Am. Chem. Soc. 129, 98 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Z. Rong, M. Q. Zhang, and W. H. Ruan, Mater. Sci. Technol 22(7), 787 (2006).CrossRefGoogle Scholar
  19. 19.
    S.-W. Zhang, S.-X. Zhou, Y.-M. Weng, and L.-M. Wu, Langmuir 21, 2124 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Nakamura, US Patent No. 0330582 (2010).Google Scholar
  21. 21.
    V. V. Kazakova, A. S. Zhiltsov, O. B. Gorbatsevitch, et al., J. Inorg. Organomet. Polym. Mater 22(3), 564 (2012).CrossRefGoogle Scholar
  22. 22.
    L. A. Novokshonova, P. N. Brevnov, V. G. Grinev, et al., Nanotechnol. Russ. 3(5–6), 330 (2008).CrossRefGoogle Scholar
  23. 23.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, et al., Nanotechnol. Russ. 3(5–6), 321 (2008).CrossRefGoogle Scholar
  24. 24.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, et al., J. Polym. Sci., Part A: Polym. Chem. 48, 4310 (2010).CrossRefGoogle Scholar
  25. 25.
    V. V. Kazakova, E. A. Rebrov, V. D. Myakushev, et al. in Am. Chem. Soc. Symp. Book Series 729, Ed. by S. J. Clarson, J. J. Fitzgerald, M. J. Owen, and S. D. Smith (Am. Chem. Soc, New York, 2000).Google Scholar
  26. 26.
    Z. Grubisic, R. Rempp, and H. Benoir, J. Polym. Sci., Part B: Polym. Phys. 5, 753 (1967).CrossRefGoogle Scholar
  27. 27.
    A. E. Chalykh, V. K. Gerasimov, and Yu. M. Mikhailov, Phase State Diagrams of Polymer Systems (Yanus-K, Moscow, 1998) [in Russian].Google Scholar
  28. 28.
    V. Makarova and V. Kulichikhin, Interferometry. Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2012).Google Scholar
  29. 29.
    A. B. Bourlinos, R. Herrera, N. Chalkias, et al., Adv. Mater. 17, 234 (2005).CrossRefGoogle Scholar
  30. 30.
    R. Rodriguez, R. Herrera, L. A. Archer, and E. P. Giannelis, Adv. Mater. 20, 4353 (2008).CrossRefGoogle Scholar
  31. 31.
    S. Ilyin, V. Kulichikhin, and A. Malkin, Appl. Rheol 24(1), 13653 (2014).Google Scholar
  32. 32.
    S. O. Ilyin, A. Ya. Malkin, and V. G. Kulichikhin, Polym. Sci., Ser. A 56(1), 98 (2014).CrossRefGoogle Scholar
  33. 33.
    M. B. Kossuth, D. C. Morse, and F. S. Bates, J. Rheol 43, 167 (1999).CrossRefGoogle Scholar
  34. 34.
    C. Y. Ryu, M. S. Lee, D. A. Hajduk, and T. P. Lodge, J. Polym. Sci., Part B: Polym. Phys. 35, 2811 (1997).CrossRefGoogle Scholar
  35. 35.
    A. B. Bourlinos, E. P. Giannelis, Q. Zhang, et al., Eur. Phys. J. 20, 109 (2006).Google Scholar
  36. 36.
    A. E. Chalykh and V. K. Gerasimov, Russ. Chem. Rev. 73(1), 59 (2004).CrossRefGoogle Scholar
  37. 37.
    S. A. Vshivkov and E. V. Rusinova, Polym. Sci., Ser. A 36(1), 81 (1994).Google Scholar
  38. 38.
    S. V. Kotomin, S. O. Il’in, T. N. Filippova, and G. K. Shambilova, Polym. Sci., Ser. A 55(3), 186 (2013).CrossRefGoogle Scholar
  39. 39.
    A. Ya. Malkin and S. G. Kulichikhin, Polym. Sci., Ser. B 38(2), 362 (1996).Google Scholar
  40. 40.
    W. Kuhn, H. Majer, and F. Burkhardt, Helv. Chim. Acta 43(5), 1208 (1960).CrossRefGoogle Scholar
  41. 41.
    H. Edwards, J. Appl. Polym. Sci. 12(10), 2213 (1968).CrossRefGoogle Scholar
  42. 42.
    T. M. Clausen, P. K. Vinson, J. R. Minter, et al., J. Phys. Chem. 96(1), 474 (1992).CrossRefGoogle Scholar
  43. 43.
    E. K. Wheeler, P. Izu, and G. G. Fuller, Rheol. Acta. 35(2), 139 (1996).CrossRefGoogle Scholar
  44. 44.
    L. M. Walker, Curr. Opin. Colloid Interface Sci 6, 451 (2001).CrossRefGoogle Scholar
  45. 45.
    A. Ya. Malkin, Polym. Sci., Ser. A 48(1), 39 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. A. Karpukhina
    • 1
  • S. O. Il’in
    • 1
  • V. V. Makarova
    • 1
  • I. B. Meshkov
    • 2
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations