Polymer Science Series A

, Volume 56, Issue 6, pp 770–780 | Cite as

Self-assembly of polymer brushes in the presence of a surfactant: A system of strands

80th Anniversary of N.A. Platé

Abstract

This theoretical study is focused on the formation of a cylindrical microstructure in a planar polymer brush in the presence of a surfactant. It is assumed that the brush may be nonuniform in the direction along the grafting plane and that there are regions with constant concentrations of monomer units and regions occupied only by the surfactant. The surfactant molecule is simulated by a dimer whose parts interact in a different manner with the monomer units of the polymer. At the interface between these regions, dimer molecules are oriented mainly perpendicularly to this interface and the surface tension is reduced. If the surface energy becomes negative, the formation of a structured brush is more favorable in terms of energy than that of a uniform brush. As a result, there may appear a cylindrical microstructure in which grafted macromolecules are united into strands perpendicular to the grafting plane. The stretching of macromolecules and their interaction with the solvent within the strands are described by the Alexander-de Gennes model, whereas the surface energy is calculated with allowance for the surface curvature of strands at a high degree of amphiphilicity of the surfactant molecules. It is shown that the arising strands have radii of the order of the surfactant-molecule length, while the number of macromolecules per strand is proportional to the surface density of their grafting. With an increase in the grafting density, the strand length increases initially, while the volume fraction of the polymer in a strand remains constant. Furthermore, strands start to shorten and their density grows. Structural characteristics are calculated as a function of the parameter characterizing the degree of amphiphilicity of the solvent molecules, their sizes, and their average energy of interaction with monomer units.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polymer Brushes: Synthesis, Characterization, Applications Ed. by R. C. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe (Wiley-VCH, Weinheim, 2004).Google Scholar
  2. 2.
    A. Halperin, M. Tirrell, and T. P. Lodge, Adv. Polym. Sci. 100/1, 31 (1992).CrossRefGoogle Scholar
  3. 3.
    S. Alexander, J. Phys. (Paris) 38(8), 983 (1977).CrossRefGoogle Scholar
  4. 4.
    P. -G. de Gennes, Macromolecules 13(5), 1069 (1980).CrossRefGoogle Scholar
  5. 5.
    S. T. Milner, T. A. Witten, and M. E. Cates, Europhys. Lett. 5, 413 (1988).CrossRefGoogle Scholar
  6. 6.
    A. M. Skvortsov, A. A. Gorbunov, V. A. Pavlushkov, et al., Polym. Sci. U.S.S.R. 30(8), 1706 (1988).CrossRefGoogle Scholar
  7. 7.
    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24(1), 140 (1991).CrossRefGoogle Scholar
  8. 8.
    E. P. K. Currie, G. J. Fleer, M. A. Cohen Stuart, and O. V. Borisov, Eur. Phys. J. E: Soft Matter Biol. Phys. 1(1), 27 (2000).CrossRefGoogle Scholar
  9. 9.
    E. Schneck, A. Schollier, A. Halperin, et al., Langmuir 29(46), 14178 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Xing and G. Zhao, e-Polym. 7, 202 (2007).Google Scholar
  11. 11.
    Y. Yan, H. Hoffmann, A. Leson, and C. Mayer, J. Phys. Chem. B 111(22), 6161 (2007).CrossRefGoogle Scholar
  12. 12.
    R. Jose, J. R. Ochoa G, M. Munoz H., D. Reinoso, et al., e-Polym. 8, 320 (2008).Google Scholar
  13. 13.
    E. Radlinska, T. Gulik-Krzywicki, F. Lafuma, et al., Phys. Rev. Lett. 74(21), 4237 (1995).CrossRefGoogle Scholar
  14. 14.
    O. T. Ikkala, J. Ruokolainen, G. ten Brinke, et al., Macromolecules 28(21), 7088 (1995).CrossRefGoogle Scholar
  15. 15.
    J. Ruokolainen, J. Tanner, G. ten Brinke, et al., Macromolecules 28(23), 7779 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Ruokolainen, J. Tanner, G. ten Brinke, et al., Macromolecules 29(10), 3409 (1996).CrossRefGoogle Scholar
  17. 17.
    I. Akiba, H. Masunaga, S. Murata, and K. Sasaki, e-Polym. 6, 463 (2006).Google Scholar
  18. 18.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 54(6), 6646 (1996).CrossRefGoogle Scholar
  19. 19.
    M. K. Glagolev, A. R. Khokhlov, and V. V. Vasilevskaya, Polym. Sci., Ser. A 54(9), 767 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Möddel, W. Janke, and M. Bachmann, Phys. Rev. Lett. 112(14), 148303 (2014).CrossRefGoogle Scholar
  21. 21.
    E. N. Govorun, A. S. Ushakova, and A. R. Khokhlov, Eur. Phys. J. E: Soft Matter Biol. Phys. 32(3), 229 (2010).CrossRefGoogle Scholar
  22. 22.
    E. N. Govorun, A. S. Ushakova, and A. R. Khokhlov, Polym. Sci., Ser. A 54(5), 414 (2012).CrossRefGoogle Scholar
  23. 23.
    P. N. Ablyazov, V. V. Vasilevskaya, and A. R. Khokhlov, Polym. Sci., Ser. A 51(4), 424 (2009).CrossRefGoogle Scholar
  24. 24.
    H. M. James and E. Guth, J. Chem. Phys. 11(10), 455 (1943).CrossRefGoogle Scholar
  25. 25.
    H. M. James and E. Guth, J. Polym. Sci. 4(2), 153 (1949).CrossRefGoogle Scholar
  26. 26.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18(3), 915 (2006).Google Scholar
  27. 27.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, Polym. Sci., Ser. A 50(8), 854 (2008).CrossRefGoogle Scholar
  28. 28.
    E. A. Maresov and A. N. Semenov, Macromolecules 41(23), 9439 (2008).CrossRefGoogle Scholar
  29. 29.
    A. V. Subbotin and A. N. Semenov, Polym. Sci., Ser. C 54(1), 36 (2012).CrossRefGoogle Scholar
  30. 30.
    T. Hoshino, Y. Tanaka, H. Jinnai, and A. Takahara, J. Phys. Soc. Jpn. 82(2), 021014 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations