Polymer Science Series A

, Volume 56, Issue 4, pp 534–544 | Cite as

Does symmetry of branching affect the properties of dendrimers?

Theory and Simulation

Abstract

Statistical properties of second- to sixth- generation dendrimers with symmetric and asymmetric branching were investigated via Langevin dynamics in dilute solutions with the use of a coarse-grained model. The cases of charged and neutral terminal groups are discussed. Steric interactions were controlled by repulsive forces, a circumstance that corresponded to an athermal solvent. Electrostatic interactions were taken into account via the Ewald method. The size and shape of macromolecules; the density profiles for monomer units and, separately, for terminal groups; and the effective charge of a dendrimer as a function of the generation number were determined. It is shown that the equilibrium characteristics of dendrimers with symmetric and asymmetric branching are similar if the average lengths of their spacers coincide. Branching asymmetry appeared itself only in increased “turning back” of short spacers relative to their longer neighbors’ arising from the same branching point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dendrimers in Biomedical Applications, Ed. by B. Klainert, L. Peng, and V. Cena (Royal Society of Chemistry, New York, 2013).Google Scholar
  2. 2.
    I. M. Neelov, S. G. Falkovich, D. A. Markelov, E. Paci, A. A. Darinskii, and H. Tenhu, in Dendrimers in Biomedical Applications, Ed. by B. Klainert and S. Prici (Royal Society of Chemistry, New York, 2013), p. 99.Google Scholar
  3. 3.
    I. M. Neelov, D. A. Markelov, S. G. Fal’kovich, M. Yu. Ilyash, B. M. Okrugin, and A. A. Darinskii, Polym. Sci., Ser. C 55, 154 (2013).CrossRefGoogle Scholar
  4. 4.
    B. P. Roberts, G. Y. Krippner, M. J. Scanlon, and D. K. Chalmers, Macromolecules 42, 2784 (2009).CrossRefGoogle Scholar
  5. 5.
    I. V. Mikhailov and A. S. Pavlov, Vestn. Tversk. Gos. Univ., Ser. Khim., No. 13, 155 (2012).Google Scholar
  6. 6.
    A. S. Pavlov, I. V. Mikhailov, and A. A. Darinskii, in Proceedings of XIX All-Russia Conference “Structure and Dynamics of Molecular Systems”, Moscow-Ioshkar-Ola-Ufa (Yal’chik, Kazan, 2012), Vol. 2, p. 43.Google Scholar
  7. 7.
    S. V. Lyulin, A. V. Lyulin, and A. A. Darinskii, Polym. Sci., Ser. A 46, 189 (2004).Google Scholar
  8. 8.
    S. V. Lyulin, A. V. Lyulin, and A. A. Darinskii, Polym. Sci., Ser. A 46, 196 (2004).Google Scholar
  9. 9.
    I. Lee, B. D. Athey, A. W. Wetzel, W. Meixner, and J. R. Baker, Jr., Macromolecules 35, 4510 (2002).CrossRefGoogle Scholar
  10. 10.
    Sh. M. Aharoni, Ch. R. Crosby, and E. K. Walsh, Macromolecules 15, 1093 (1982).CrossRefGoogle Scholar
  11. 11.
    J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys. 54, 5237 (1971).CrossRefGoogle Scholar
  12. 12.
    I. T. Todorov and W. Smith, DL POLY, (Warrington: STFC Daresbury Laboratory Daresbury, 2011).Google Scholar
  13. 13.
  14. 14.
    J. S. Klos and J. U. Sommer, Macromolecules 43, 4418 (2010).CrossRefGoogle Scholar
  15. 15.
    O. V. Borisov, E. B. Zhulina, F. A. M. Leermakers, M. Ballauff, and A. H. E. Müller, Adv. Polym. Sci. 241, 1 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations