Polymer Science Series A

, Volume 56, Issue 4, pp 393–404 | Cite as

Conformations of molecular brushes based on polyimide and poly(methyl methacrylate) in selective solvents: Experiment and computer simulation

  • A. P. Filippov
  • E. V. Belyaeva
  • A. S. Krasova
  • M. A. Simonova
  • T. K. Meleshko
  • D. M. Ilgach
  • N. N. Bogorad
  • A. V. Yakimansky
  • S. V. Larin
  • A. A. Darinskii
Polymer Solutions

Abstract

The effect of solvent quality with respect to main and side chains on the conformations of molecular brushes is investigated by the methods of molecular hydrodynamics and optics as well as by computer simulation. Copolymers with a polyimide backbone and poly(methyl methacrylate) side chains are studied in solvents featuring strongly different thermodynamic qualities (chloroform, ethyl acetate, and 3-heptanone). The studied samples have close total molecular masses and backbone lengths but differ in grafting densities and lengths of side chains: a brush with densely grafted and relatively short side chains versus a brush with loosely grafted but very long side chains. For both types of brushes, similar changes in hydrodynamic behavior with improvement in the solvent quality are found experimentally. Computer simulation shows that these changes have different origins. In the former case, macromolecules are elongated, and their volumes grow simultaneously, while in the latter case, the shape of the macromolecules remains close to spherical and the changes in hydrodynamic parameters are mainly due to an increase in the volume of macromolecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev. 101, 3747 (2001).CrossRefGoogle Scholar
  2. 2.
    S. S. Sheiko, B. S. Sumerlin, and M. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Zhang and A. H. Müller, J. Polym. Sci., Part A: Polym. Chem. 43, 3461 (2005).CrossRefGoogle Scholar
  4. 4.
    K. Ishizu, K. Tsubaki, A. Mori, and S. Uchida, Prog. Polym. Sci. 28, 27 (2003).CrossRefGoogle Scholar
  5. 5.
    I. I. Potemkin and V. V. Palyulin, Polym. Sci., Ser. A 51, 123 (2009).CrossRefGoogle Scholar
  6. 6.
    V. N. Tsvetkov, Rigid-Chain Polymers (Nauka, Leningrad, 1986; Plenum, New York, 1989).Google Scholar
  7. 7.
    Y. Tsukahara, S. Kohjiya, K. Tsutsumi, and Y. Okamoto, Macromolecules 27, 1662 (1994).CrossRefGoogle Scholar
  8. 8.
    M. Wintermantel, M. Schmidt, Y. Tsukahara, K. Kajiwara, and S. Kohjiya, Macromol. Rapid Commun. 15, 279 (1994).CrossRefGoogle Scholar
  9. 9.
    N. Nemoto, M. Nagai, A. Koike, and S. Okada, Macromolecules 28, 3854 (1995).CrossRefGoogle Scholar
  10. 10.
    K. Fischer and M. Schmidt, Macromol. Rapid Commun. 22, 787 (2001).CrossRefGoogle Scholar
  11. 11.
    B. Zhang, F. Gröhn, J. S. Pedersen, K. Fischer, and M. Schmidt, Macromolecules 39, 8440 (2006).CrossRefGoogle Scholar
  12. 12.
    K. Terao, Y. Takeo, M. Tazaki, Y. Nakamura, and T. Norisuye, Polym. J. (Tokyo) 31, 193 (1999).CrossRefGoogle Scholar
  13. 13.
    K. Terao, T. Hokajo, Y. Nakamura, and T. Norisuye, Macromolecules 32, 3690 (1999).CrossRefGoogle Scholar
  14. 14.
    I. Wataoka, H. Urakawa, K. Kobayashi, T. Akaike, M. Schmidt, and K. Kajiwara, Macromolecules 32, 1816 (1999).CrossRefGoogle Scholar
  15. 15.
    T. M. Birshtein, O. V. Borisov, E. B. Zhulina, A. R. Khokhlov, and T. A. Yurasova, Vysokomol. Soedin., Ser. A 29, 1169 (1987).Google Scholar
  16. 16.
    M. Gerle, K. Fisher, S. Roos, A. H. E. Müller, M. Schmidt, S. S. Sheiko, S. Prokhorova, and M. Möller, Macromolecules 32, 2629 (1999).CrossRefGoogle Scholar
  17. 17.
    G. Cheng, A. Böker, M. Zhang, G. Krausch, and A. H. E. Müller, Macromolecules 34, 6883 (2001).CrossRefGoogle Scholar
  18. 18.
    M. Zhang, T. Breiner, H. Mori, and A. H. E. Müller, Polymer 44, 1449 (2003).CrossRefGoogle Scholar
  19. 19.
    F. Sun, S. S. Sheiko, M. Möller, K. Beers, and K. Matyjaszewski, J. Phys. Chem. A 108, 9682 (2004).CrossRefGoogle Scholar
  20. 20.
    M. Wang, S. Zou, G. Guerin, L. Shen, K. Deng, M. Jones, G. C. Walker, G. D. Scholes, and M. A. Winnik, Macromolecules 41, 6993 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Sahl, S. Muth, R. Branscheid, M. Schmidt, and K. Fisher, Macromolecules 45, 5167 (2012).CrossRefGoogle Scholar
  22. 22.
    K. I. Popov, V. V. Palyulin, M. Möller, A. R. Khokhlov, and I. I. Potemkin, Beilstein J. Nanotechnol. 2, 569 (2011).CrossRefGoogle Scholar
  23. 23.
    O. V. Borisov and E. B. Zhulina, Macromolecules 38, 2506 (2005).CrossRefGoogle Scholar
  24. 24.
    P. Kosovan, J. Kuldova, Z. Limpouchova, K. Prochazka, E. B. Zhulina, and O. V. Borisov, Macromolecules 42, 6748 (2009).CrossRefGoogle Scholar
  25. 25.
    G. D. Fu, E. T. Kang, K. G. Neoh, C. C. Lin, and D. J. Liaw, Macromolecules 38, 7593 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Liang, Y.-J. Jhuang, C.-F. Zhang, W.-J. Tsai, and H.-C. Feng, Eur. Polym. J. 45, 2348 (2009).CrossRefGoogle Scholar
  27. 27.
    G. Yilmaz, H. Toiserkani, D. O. Demirkol, S. Sakarya, S. Timur, Y. Yagci, and L. Torun, J. Polym. Sci., Part A: Polym. Chem. 49, 110 (2011).CrossRefGoogle Scholar
  28. 28.
    Z. Cheng, X. Zhu, E. T. Kang, and K. G. Neoh, Macromolecules 39, 1660 (2006).CrossRefGoogle Scholar
  29. 29.
    A. V. Yakimanskii, T. K. Meleshko, and N. N. Bogorad, Khim. Zh. Kazakh., Spets. Vyp., No. 21, 31 (2008).Google Scholar
  30. 30.
    T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, E. N. Vlasova, A. V. Dobrodumov, I. I. Malakhova, N. I. Gorshkov, V. D. Krasikov, and A. V. Yakimanskii, Polym. Sci., Ser. B 52, 589 (2010).CrossRefGoogle Scholar
  31. 31.
    A. V. Yakimanskii, T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, E. N. Vlasova, and T. D. Anan’eva, Izv. Akad. Nauk, Ser. Khim., No. 5, 994 (2012).Google Scholar
  32. 32.
    A. Krasova, E. Belyaeva, E. Tarabukina, A. Filippov, T. Meleshko, D. Ilgach, N. Bogorad, and A. Yakimansky, Macromol. Symp. 316, 32 (2012).CrossRefGoogle Scholar
  33. 33.
    A. P. Filippov, E. V. Belyaeva, A. S. Krasova, M. A. Simonova, E. B. Tarabukina, T. K. Meleshko, D. M. Ilgach, N. N. Bogorad, and A. V. Yakimansky, Polym. Sci., Ser. A 56, 1 (2014).CrossRefGoogle Scholar
  34. 34.
    V. E. Eskin, Light Scattering from Polymer Solutions and Properties of Macromolecules (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  35. 35.
    P. Kratochvil, Classical Light Scattering from Polymer Solution (Elsevier, Amsterdam, 1987).Google Scholar
  36. 36.
    V. N. Tsvetkov, V. E. Eskin, and S. Ya. Frenkel’, Structure of Macromolecules in Solutions (Nauka, Moscow, 1964; Butterworths, London, 1970).Google Scholar
  37. 37.
    S. Strandman, A. Zarembo, A. A. Darinskii, B. Löflund, S. J. Butcher, and H. Tenhu, Polymer 48, 7008 (2007).CrossRefGoogle Scholar
  38. 38.
    S. Strandman, A. Zarembo, A. A. Darinskii, P. Laurinmki, S. J. Butcher, E. Vuorimaa, H. Lemmetyinen, and H. Tenhu, Macromolecules 41, 8855 (2008).CrossRefGoogle Scholar
  39. 39.
    S. V. Larin, A. A. Darinskii, E. B. Zhulina, and O. V. Borisov, Langmuir 25, 1915 (2009).CrossRefGoogle Scholar
  40. 40.
    S. V. Larin, D. V. Pergushov, Y. Xy, A. A. Darinskii, A. B. Zezin, A. H. E. Müller, and O. V. Borisov, Soft Matter 5, 4938 (2009).CrossRefGoogle Scholar
  41. 41.
    P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford Univ. Press, New York, 1990).Google Scholar
  42. 42.
    P. G. Khalatur, A. R. Khokhlov, D. A. Mologin, and P. Reineker, J. Chem. Phys. 119, 1232 (2003).CrossRefGoogle Scholar
  43. 43.
    L. Wesson and D. Eisenberg, Protein Sci. 1, 2275 (1992).Google Scholar
  44. 44.
    B. Lee and F. M. Richards, J. Mol. Biol. 55, 379 (1971).CrossRefGoogle Scholar
  45. 45.
    J.-P. Ryckaert and A. Bellemans, Chem. Phys. Lett. 30, 123 (1975).CrossRefGoogle Scholar
  46. 46.
    P. G. Khalatur, N. K. Balabaev, and A. S. Pavlov, Mol. Phys. 59, 753 (1986).CrossRefGoogle Scholar
  47. 47.
    E. Tarabukina, A. Amirova, E. Belyaeva, A. Krasova, M. Simonova, A. Filippov, T. Meleshko, D. Ilgach, N. Bogorad, and A. Yakimansky, J. Macromol. Sci., Phys. 53, 1545 (2013).CrossRefGoogle Scholar
  48. 48.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994).Google Scholar
  49. 49.
    Polymer Handbook, Ed. by E. H. Brandup, E. A. Immergut, and E. Grulke (Wiley, New York, 1999).Google Scholar
  50. 50.
    K. Terao, S. Hayashi, Y. Nakamura, and T. Norisuye, Polym. Bull. (Berlin) 44, 309 (2000).CrossRefGoogle Scholar
  51. 51.
    K. Terao, Y. Nakamura, and T. Norisuye, Macromolecules 32, 711 (1999).CrossRefGoogle Scholar
  52. 52.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP, New York, 1994).Google Scholar
  53. 53.
    W. Burchard, Adv. Polym. Sci. 143, 113 (1999).CrossRefGoogle Scholar
  54. 54.
    B. I. Voit and A. Lederer, Chem. Rev. 109, 5924 (2009).CrossRefGoogle Scholar
  55. 55.
    A. P. Filippov, E. V. Belyaeva, E. B. Tarabukina, and A. I. Amirova, Polym. Sci., Ser. C 53, 107 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. P. Filippov
    • 1
  • E. V. Belyaeva
    • 1
  • A. S. Krasova
    • 1
  • M. A. Simonova
    • 1
  • T. K. Meleshko
    • 1
  • D. M. Ilgach
    • 1
  • N. N. Bogorad
    • 1
  • A. V. Yakimansky
    • 1
  • S. V. Larin
    • 1
  • A. A. Darinskii
    • 1
    • 2
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations