Polymer Science Series A

, Volume 56, Issue 2, pp 228–239 | Cite as

Interaction of interpolyelectrolyte complexes formed by a linear polyelectrolyte and dendrimers or spheres

  • S. V. Larin
  • A. A. Darinskii
Theory and Simulation


The interaction between polyelectrolyte complexes formed by a linear polyelectrolyte and a dendrimer or a spherical particle with the opposite charge has been investigated via computer simulation. The influence of the compositions of the complexes on the effective force of the interaction between them has been studied. It has been shown that the effective attraction between the complexes appears at short distances in the vicinity of the isoelectric point. This attraction is correlative in nature and stronger for the complexes of the linear polyelectrolyte with spherical particles than for the complexes with dendrimers.


Polymer Science Series Monomer Unit Equivalent Sphere Polyelectrolyte Complex Gyration Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. U. Bielinska, J. F. Kukowska-Latallo, and J. R. Baker, Biochim. Biophys. Acta 1353, 180 (1997).CrossRefGoogle Scholar
  2. 2.
    A. U. Bielinska, C. Chen, J. Johnson, and J. R. Baker, Bioconjug. Chem. 10, 843 (1999).CrossRefGoogle Scholar
  3. 3.
    W. Chen, N. J. Turro, and D. A. Tomalia, Langmuir 16, 15 (2000).CrossRefGoogle Scholar
  4. 4.
    V. A. Kabanov, V. G. Sergeyev, O. A. Pyshkina, A. Zinchenko, A. B. Zezin, J. G. H. Joosten, J. Brackman, and K. Yoshikawa, Macromolecules 33, 9587 (2000).CrossRefGoogle Scholar
  5. 5.
    C.-J. Su, H.-L. Chen, M.-C. Wei, S.-F. Peng, H.-W. Sung, and V. A. Ivanov, Biomacromolecules 10, 773 (2009).CrossRefGoogle Scholar
  6. 6.
    E. V. Anufrieva, M. G. Krakovyak, T. D. Anan’eva, G. P. Vlasov, N. V. Bayanova, T. N. Nekrasova, and R. Yu. Smyslov, Polym Sci., Ser. A 49, 671 (2007).CrossRefGoogle Scholar
  7. 7.
    M.-L. Örberg, K. Schillén, and T. Nylander, Biomacromolecules 8, 1557 (2007).CrossRefGoogle Scholar
  8. 8.
    V. A. Izumrudov, N. V. Kuchkina, A. L. Rusanov, and Z. B. Shifrina, Polym. Sci., Ser. A 51, 229 (2009).CrossRefGoogle Scholar
  9. 9.
    M.-L. Ainalem, A. M. Carnerup, J. Janiak, V. Alfredsson, T. Nylander, and K. Schillen, Soft Matter 5, 2310 (2009).CrossRefGoogle Scholar
  10. 10.
    S. V. Lyulin, A. A. Darinskii, A. V. Lyulin, and I. Emri, Macromolecules 38, 3990 (2005).CrossRefGoogle Scholar
  11. 11.
    S. V. Lyulin, A. V. Lyulin, and A. A. Darinskii, Polym. Sci., Ser. A 47, 1217 (2005).Google Scholar
  12. 12.
    S. Lyulin, A. Darinskii, and A. Lyulin, e-Polymers, No. 97 (2007).Google Scholar
  13. 13.
    S. V. Lyulin, A. A. Darinskii, and A. V. Lyulin, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 78, 041801 (2008).CrossRefGoogle Scholar
  14. 14.
    S. V. Larin, A. A. Darinskii, A. V. Lyulin, and S. V. Lyulin, J. Phys. Chem. B 114, 2910 (2010).CrossRefGoogle Scholar
  15. 15.
    T. T. Nguyen and B. I. Shklovskii, Physica A (Amsterdam) 293, 324 (2001).CrossRefGoogle Scholar
  16. 16.
    T. T. Nguyen and B. I. Shklovskii, J. Chem. Phys. 114, 5905 (2001).CrossRefGoogle Scholar
  17. 17.
    S. Huißmann, C. N. Likos, and R. Blaak, Soft Matter 7, 8419 (2011).CrossRefGoogle Scholar
  18. 18.
    W.-D. Tian and Yu.-Q. Ma, Soft Matter 7, 500 (2011).CrossRefGoogle Scholar
  19. 19.
    D. Truzzolillo, F. Bordi, F. Sciortino, and C. Cametti, Eur. Phys. J. E 29, 229 (2009).CrossRefGoogle Scholar
  20. 20.
    D. Truzzolillo, F. Bordi, F. Sciortino, and S. Sennato, J. Chem. Phys. 133, 024901 (2010).CrossRefGoogle Scholar
  21. 21.
    S. V. Larin, A. A. Darinskii, E. B. Zhulina, and O. V. Borisov, Langmuir 25, 1915 (2009).CrossRefGoogle Scholar
  22. 22.
    S. V. Larin, D. V. Pergushov, Y. Xu, A. A. Darinskii, A. B. Zezin, A. H. E. Muller, and O. V. Borisov, Soft Matter 5, 4938 (2009).CrossRefGoogle Scholar
  23. 23.
    M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford Univ. Press, New York, 1990).Google Scholar
  24. 24.
    T. A. Darden, D. M. York, and L. G. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  25. 25.
    U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  26. 26.
    P. G. Khalatur, N. K. Balabaev, and A. S. Pavlov, Mol. Phys. 59, 753 (1986).CrossRefGoogle Scholar
  27. 27.
    R. Scherrenberg, B. Coussens, P. Van Vliet, G. Edouard, J. Brickman, and E. De Brabander, Macromolecules 31, 456 (1998).CrossRefGoogle Scholar
  28. 28.
    D. N. Theodorou and U. W. Suter, Macromolecules 18, 1206 (1985).CrossRefGoogle Scholar
  29. 29.
    D. Velegol and P. K. Thwar, Langmuir 17, 7687 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations