Polymer Science Series A

, Volume 56, Issue 2, pp 196–204 | Cite as

The role of chain structure in the rheological behavior of vinyl acetate-vinyl alcohol copolymers

  • S. O. Ilyin
  • Yu. I. Denisova
  • L. B. Krentsel’
  • G. A. Shandryuk
  • G. N. Bondarenko
  • A. D. Litmanovich
  • V. G. Kulichikhin
  • A. Ya. Malkin
  • Ya. V. Kudryavtsev
Rheology

Abstract

A comparative study of the viscoelastic properties of melts of vinyl acetate-vinyl alcohol copolymers with equimolar compositions characterized by different statistical distributions of chain units has been performed. It has been shown that the principle of temperature-frequency superposition is obeyed by copolymers close to a random copolymer, but is violated by copolymers with the block distribution of units. Unlike amorphous random copolymers, a multiblock copolymer is characterized by weak crystallinity, the absence of the relaxation flow state, and a more pronounced tendency to form interchain hydrogen bonds both between two hydroxyl groups and between hydroxyl and ester groups.

Keywords

Polymer Science Series Rheological Behavior Chain Structure PVAc Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Badi, D. Chan-Seng, and J.-F. Lutz, Macromol. Chem. Phys. 214, 135 (2013).CrossRefGoogle Scholar
  2. 2.
    V. Abetz and P. F. W. Simon, Adv. Polym. Sci. 189, 125 (2005).CrossRefGoogle Scholar
  3. 3.
    F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, and G. H. Fredrickson, Science (Washington, D. C.) 336, 434 (2012).CrossRefGoogle Scholar
  4. 4.
    I. W. Hamley, Prog. Polym. Sci. 34, 1161 (2009).CrossRefGoogle Scholar
  5. 5.
    H.-C. Kim, S.-M. Park, and W. D. Hinsberg, Chem. Rev. 110, 146 (2010).CrossRefGoogle Scholar
  6. 6.
    H. Zhang and P. K. Shen, Chem. Rev. 112, 2780 (2012).CrossRefGoogle Scholar
  7. 7.
    P. G. Khalatur and A. R. Khokhlov, Adv. Polym. Sci. 195, 1 (2006).CrossRefGoogle Scholar
  8. 8.
    J. J. Semler and J. Genzer, J. Chem. Phys. 125, 014902 (2006).CrossRefGoogle Scholar
  9. 9.
    R. Liu, M. Fraylich, and B. R. Saunders, Colloid Polym. Sci. 287, 627 (2009).CrossRefGoogle Scholar
  10. 10.
    J.-F. Lutz, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 2237 (2011).CrossRefGoogle Scholar
  11. 11.
    E. I. Shakhnovich and A. M. Gutin, J. Phys. France 50, 1843 (1989).CrossRefGoogle Scholar
  12. 12.
    G. H. Fredrickson, S. T. Milner, and L. Leibler, Macromolecules 25, 6341 (1992).CrossRefGoogle Scholar
  13. 13.
    H. Angerman, G. Brinke, and I. Erukhimovich, Macromolecules 29, 3255 (1996).CrossRefGoogle Scholar
  14. 14.
    A. V. Subbotin and A. N. Semenov, Eur. Phys. J. E 7, 49 (2002).CrossRefGoogle Scholar
  15. 15.
    S. I. Kuchanov and S. V. Panyukov, J. Phys.: Condens. Matter 18, L43 (2006).Google Scholar
  16. 16.
    A. Heydt, M. Muller, and A. Zippelius, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 83, 051131 (2011).CrossRefGoogle Scholar
  17. 17.
    B. W. Swift and M. Olvera De la Cruz, Europhys. Lett. 35, 487 (1996).CrossRefGoogle Scholar
  18. 18.
    A. D. Litmanovich, Y. V. Kudryavtsev, Y. A. Kriksin, and O. A. Kononenko, Macromol. Theory Simul. 12, 11 (2003).CrossRefGoogle Scholar
  19. 19.
    J. Houdayer and M. Muller, Macromolecules 37, 4283 (2004).CrossRefGoogle Scholar
  20. 20.
    A. D. Litmanovich, V. V. Podbelskiy, and Y. V. Kudryavtsev, Macromol. Theory Simul. 19, 269 (2010).CrossRefGoogle Scholar
  21. 21.
    A. A. Gavrilov, Y. V. Kudryavtsev, P. G. Khalatur, and A. V. Chertovich, Chem. Phys. Lett. 503, 277 (2011).CrossRefGoogle Scholar
  22. 22.
    B. Steinmüller, M. Müller, K. R. Hambrecht, G. D. Smith, and D. Bedrov, Macromolecules 45, 1107 (2012).CrossRefGoogle Scholar
  23. 23.
    B. Steinmüller, M. Müller, K. R. Hambrecht, and D. Bedrov, Macromolecules 45, 9841 (2012).CrossRefGoogle Scholar
  24. 24.
    D. Ratna and J. Karger-Kocsis, J. Mater. Sci. 43, 254 (2008).CrossRefGoogle Scholar
  25. 25.
    C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, Prog. Polym. Sci. 36, 1443 (2011).CrossRefGoogle Scholar
  26. 26.
    P. S. Chum and K. W. Swogger, Prog. Polym. Sci. 33, 797 (2008).CrossRefGoogle Scholar
  27. 27.
    L. Leibler, Prog. Polym. Sci. 30, 898 (2005).CrossRefGoogle Scholar
  28. 28.
    G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, New York, 2006).Google Scholar
  29. 29.
    N. A. Lynd, A. J. Meuler, and M. A. Hillmyer, Prog. Polym. Sci. 33, 875 (2008).CrossRefGoogle Scholar
  30. 30.
    A. J. Meuler, C. J. Ellison, J. Qin, C. M. Evans, M. A. Hillmyer, and F. S. Bates, J. Chem. Phys. 130, 234903 (2009).CrossRefGoogle Scholar
  31. 31.
    S. Li, R. A. Register, B. G. Landes, P. D. Hustad, and J. D. Weinhold, Macromolecules 43, 4761 (2010).CrossRefGoogle Scholar
  32. 32.
    Y. Wang, X. Li, P. Tang, and Y. Yang, Physica B (Amsterdam) 406, 1132 (2011).CrossRefGoogle Scholar
  33. 33.
    J. M. Widin, A. K. Schmitt, A. L. Scmitt, K. Im, and M. K. Mahanthappa, J. Am. Chem. Soc. 134, 3834 (2012).CrossRefGoogle Scholar
  34. 34.
    Y. Li, H.-J. Qian, and Z.-Y. Lu, Polymer 54, 3716 (2013).CrossRefGoogle Scholar
  35. 35.
    Yu. I. Denisova, L. B. Krentsel’, A. S. Peregudov, E. A. Litmanovich, V. V. Podbel’skii, A. D. Litmanovich, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 54, 375 (2012).CrossRefGoogle Scholar
  36. 36.
    Yu. I. Denisova, G. A. Shandryuk, L. B. Krentsel’, I. V. Blagodatskikh, A. S. Peregudov, A. D. Litmanovich, and Ya. V. Kudryavtsev, Polym. Sci., Ser. A 55, 385 (2013).CrossRefGoogle Scholar
  37. 37.
    I. Ahmed and J. G. Pritchard, Polymer 20, 1492 (1979).CrossRefGoogle Scholar
  38. 38.
    D. P. Joshi and J. G. Pritchard, Polymer 19, 427 (1978).CrossRefGoogle Scholar
  39. 39.
    R. K. Tubbs, J. Polym. Sci., Part A-1 4, 623 (1966).CrossRefGoogle Scholar
  40. 40.
    T. Moritani and Y. Fujiwara, Macromolecules 10, 532 (1977).CrossRefGoogle Scholar
  41. 41.
    I. Sakurada, Pure Appl. Chem. 16, 263 (1968).CrossRefGoogle Scholar
  42. 42.
    F. Arranz and M. Ashraf-Tahir, Rev. Plast. Mod. 20, 781 (1969).Google Scholar
  43. 43.
    E. Turska and R. Jantas, J. Polym. Sci., Polym. Symp. 47, 359 (1974).CrossRefGoogle Scholar
  44. 44.
    B. Garnaik and S. M. Thombre, J. Appl. Polym. Sci. 72, 123 (1999).CrossRefGoogle Scholar
  45. 45.
    N. A. Platé, A. D. Litmanovich, and O. V. Noah, Macromolecular Reactions (Khimiya, Moscow, 1977; Wiley, New York, 1995).Google Scholar
  46. 46.
    A. J. Müller and M. L. Arnal, Prog. Polym. Sci. 30, 559 (2005).CrossRefGoogle Scholar
  47. 47.
    P. J. Flory, Trans. Faraday Soc. 51, 848 (1955).CrossRefGoogle Scholar
  48. 48.
    A. Ya. Sorokin, V. A. Kuznetsov, M. E. Rozenberg, and N. A. Platé, Vysokomol. Soedin. 22, 913 (1980).Google Scholar
  49. 49.
    Yu. I. Denisova, Candidate’s Dissertation in Chemistry (Moscow, 2013).Google Scholar
  50. 50.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
  51. 51.
    D. G. Fesko and N. W. Tschoegl, J. Polym. Sci., Polym. Symp. 35, 51 (1971).CrossRefGoogle Scholar
  52. 52.
    H. E. Park, J. M. Dealy, G. R. Marchand, J. Wang, S. Li, and R. A. Register, Macromolecules 43, 6789 (2010).CrossRefGoogle Scholar
  53. 53.
    O. B. Reid, M. Vadlamudi, A. Mamun, H. Janani, H. Gao, W. Hu, and R. D. Alamo, Macromolecules 46, 6485 (2013).CrossRefGoogle Scholar
  54. 54.
    H. Gao, M. Vadlamudi, R. D. Alamo, and W. Hu, Macromolecules 46, 6498 (2013).CrossRefGoogle Scholar
  55. 55.
    I. M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).CrossRefGoogle Scholar
  56. 56.
    J. Jang and D. K. Lee, Polymer 44, 8139 (2003).CrossRefGoogle Scholar
  57. 57.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1980).CrossRefGoogle Scholar
  58. 58.
    Polyvinyl Alcohol, Ed. by C. A. Finch (Wiley, New York, 1973).Google Scholar
  59. 59.
    E. Nagai and N. Sagane, Kobunshi Kagaku 12, 195 (1955).CrossRefGoogle Scholar
  60. 60.
    J. R. Isasi, L. C. Cesteros, and I. Katime, Macromolecules 27, 2200 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • Yu. I. Denisova
    • 1
  • L. B. Krentsel’
    • 1
  • G. A. Shandryuk
    • 1
  • G. N. Bondarenko
    • 1
  • A. D. Litmanovich
    • 1
  • V. G. Kulichikhin
    • 1
  • A. Ya. Malkin
    • 1
  • Ya. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations