Polymer Science Series A

, Volume 56, Issue 2, pp 184–195 | Cite as

The influence of water on the friction forces of fibers in aramid fabrics

  • S. L. BazhenovEmail author
  • G. P. Goncharuk
Mechanics of Polymers


Fabrics based on high-impact organic fibers have an excellent potential to dissipate the energy of a ballistic impact. That is why they are used in protective helmets and flexible armor vests. The work of friction is the main mechanism of energy absorption in fabrics during a transverse impact. The friction forces of fibers were studied via the pullout of several neighboring fibers and via the transverse hardness indentation. The influence of water on indentation forces and pullout forces of Armos and Rusar fibers during their pullout from fabrics is studied. Water enhances friction force several-fold during the pullout of fibers. Consequently, the potential to dissipate the energy of an impact changes during a transverse action. The influence of moisture is irreversible in the Armos fabrics without a water-repellent coating, and drying does not lead to complete recovery of the friction forces of fibers. In the case of Rusar 56319 fabrics with a water-repellent coating, large drops of water roll off the fabric and only small drops influence the friction forces. A substantial variation in the indentation force is detected, thereby apparently providing evidence of the instability of the density of the fabric. An analysis of the mechanisms of energy dissipation is performed. The energy of the elastic deformation in an individual fiber is three times smaller than the kinetic energy of the fiber. Friction work can exceed the sum of kinetic energy and strain energy by an order of magnitude. The estimation of the value of the increase in the temperature of a fiber during an impact is performed. Heat is not emitted during an impact on an individual fiber in the case of the formation of a transverse wave during an inelastic impact. In the process of transmission of transverse and dilatational waves, the energy dissipation is proportionate to the impact velocity raised to the power of 8/3.


Friction Force Polymer Science Series Impact Velocity Critical Velocity Ballistic Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Wagner, in Light Ballistic Materials, Ed. by A. Bhatnagar (Tekhnosfera, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    Kh. A. Rakhmatulin, Prikl. Math. Mekh. 9, 449 (1945).Google Scholar
  3. 3.
    Kh. A. Rakhmatulin, Prikl. Math. Mekh. 11, 379 (1947).Google Scholar
  4. 4.
    A. K. Rogozinsky and S. L. Bazhenov, Polymer 33, 1391 (1992).CrossRefGoogle Scholar
  5. 5.
    J. D. Walker and S. Chocron, J. Appl. Mech. 78, 051021 (2011).CrossRefGoogle Scholar
  6. 6.
    J. C. Smith, F. L. McCrackin, and H. F. Schifer, Textile Res. J. 28, 288 (1958).CrossRefGoogle Scholar
  7. 7.
    J. C. Smith, J. M. Blandford, and H. F. Schifer, Text. Res. J. 30, 752 (1960).CrossRefGoogle Scholar
  8. 8.
    S. L. Bazhenov, I. A. Dukhovskii, P. I. Kovalev, and A. N. Rozhkov, Polym. Sci., Ser. A 43, 61 (2001).Google Scholar
  9. 9.
    D. J. Carr, J. Mater. Sci. Lett. 18, 585 (1999).CrossRefGoogle Scholar
  10. 10.
    P. M. Cunniff, Text. Res. J. 62, 495 (1992).Google Scholar
  11. 11.
    M. R. Ahmad, W. Y. W. Ahmad, J. Salleh, and A. Samsuri, Mater. Des. 29, 1353 (2008).CrossRefGoogle Scholar
  12. 12.
    P. V. Cavallaro, Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics (Naval Undersea Warfare Center Division, Newport, 2011), Technical Report, No. 12057.Google Scholar
  13. 13.
    D. J. Carr, C. Lankester, A. Peare, N. Fabri, and N. Gridley, Text. Res. J. 82, 883 (2012).CrossRefGoogle Scholar
  14. 14.
    A. M. Sadegh and P. V. Cavallaro, J. Eng. Fibers Fabr. 7, 10 (2012).Google Scholar
  15. 15.
    D. Roylance and S.-S. Wang, Fibre Sci. Technol. 14, 183 (1981).CrossRefGoogle Scholar
  16. 16.
    M. P. Rao, Y. Duan, M. Keefe, B. M. Powers, and T. A. Bogetti, Comput. Struct. 89, 556 (2009).CrossRefGoogle Scholar
  17. 17.
    R. C. Laible, Proc. Symp. Polypropyl. Fibres 9(17–18), 61 (1967).Google Scholar
  18. 18.
    J. W. S. Hearle, C. M. Leech, A. Adeyefa, and C. R. Cork, Ballistic Impact Resistance of Multi-Layer Textile Fabrics, Report No. AD-A128064 (Univ. of Manchester, Manchester, 1981).Google Scholar
  19. 19.
    B. J. Briscoe and F. Motamedi, Wear 158, 229 (1992).CrossRefGoogle Scholar
  20. 20.
    T. Duan, M. Keefe, T. A. Bogetti, and B. A. Cheeseman, Int. J. Impact Eng. 31, 996 (2005).CrossRefGoogle Scholar
  21. 21.
    V. B. C. Tan, C. T. Lim, and C. H. Cheong, Int. J. Impact Eng. 28, 207 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Termonia, Text. Res. J. 74, 723 (2004).CrossRefGoogle Scholar
  23. 23.
    X. S. Zeng, V. B. C. Tan, and V. P. W. Shim, Int. J. Numer. Methods Eng. 66, 1309 (2006).CrossRefGoogle Scholar
  24. 24.
    Z. Dong and C. T. Sun, Composites A 40, 1863 (2009).CrossRefGoogle Scholar
  25. 25.
    E. M. Parsons, M. J. King, and S. Socrate, J. Mech. Phys. Solids 61, 265 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Zeinstra, R. H. W. Thije, and L. Warnet, Int. J. Mater. Form. 2, 193 (2009).CrossRefGoogle Scholar
  27. 27.
    D. Zhu, C. Soranakom, B. Mobasher, and S. D. Rajan, Composites A 42, 868 (2011).CrossRefGoogle Scholar
  28. 28.
    V. B. C. Tan, T. E. Tay, and W. K. Teo, Int. J. Solids Struct. 42, 1561 (2005).CrossRefGoogle Scholar
  29. 29.
    S. L. Bazhenov, J. Mater. Sci. 32, 4167 (1997).CrossRefGoogle Scholar
  30. 30.
    S. L. Bazhenov, Polym. Sci., Ser. B 48, 282 (2006).CrossRefGoogle Scholar
  31. 31.
    S. L. Bazhenov and G. P. Goncharuk, Polym. Sci, Ser. A 54, 803 (2012).CrossRefGoogle Scholar
  32. 32.
    V. A. Fedorov, V. G. Bova, I. V. Tikhonov, and I. V. Slugin,
  33. 33.
    Yu. A. Mikhailin, Special Polymer Composite Materials (NOT, St. Petersburg, 2009) [in Russian].Google Scholar
  34. 34.
    Y. S. Lee, E. D. Wetzel, R. G. Egres, Jr., and N. J. Wagner, in Proceedings of 23 Arm. Sci. Conference, Orlando, 2002, p. AO–01.Google Scholar
  35. 35.
    Y. S. Lee, E. D. Wetzel, and N. J. Wagner, J. Mater. Sci. 38, 2825 (2003).CrossRefGoogle Scholar
  36. 36.
    N. Wagner and E. D. Wetzel, US Patent No. 20060234577A1 (2006).Google Scholar
  37. 37.
    K. M. Kirkwood, J. E. Kirkwood, Y. S. Lee, R. G. Egres, N. J. Wagner, and E. D. Wetzel, Text. Res. J. 74, 920 (2004).CrossRefGoogle Scholar
  38. 38.
    J. E. Kirkwood, K. M. Kirkwood, Y. S. Lee, R. G. Egres, N. J. Wagner, and E. D. Wetzel, Text. Res. J. 74, 939 (2005).CrossRefGoogle Scholar
  39. 39.
    A. Srivastava and B. S. Butola, Mater. Sci. Eng. A 529, 224 (2011).CrossRefGoogle Scholar
  40. 40.
    A. Srivastava and B. S. Butola, Crit. Rev. Solid State Mater. Sci. 37, 115 (2012).CrossRefGoogle Scholar
  41. 41.
  42. 42.
    R. J. Rabb and E. P. Fahrenthold, J. Aircraft 48, 230 (2011).CrossRefGoogle Scholar
  43. 43.
    E. D. Wetzel and N. J. Wagner, J. Aircraft 49, 671 (2012).CrossRefGoogle Scholar
  44. 44.
    P. Grosberg and S. Kedia, Text. Res. J. 36, 71 (1966).CrossRefGoogle Scholar
  45. 45.
    I. V. Slugin, G. B. Sklyarova, A. I. Kashirin, L. V. Tkacheva, and S. V. Komissarov, Khim. Volokna, No. 1, 17 (2006).Google Scholar
  46. 46.
    M. Karahan, A. Kus, and R. Eren, Int. J. Impact Eng. 35, 499 (2008).CrossRefGoogle Scholar
  47. 47.
  48. 48.
    A. R. Sabet, M. H. Beheshty, and H. Rahimi, Polym. Compos. 30, 1497 (2009).CrossRefGoogle Scholar
  49. 49.
    F. Matthews and R. Rollings, Composite Materials. Mechanics and Technology (Tekhnosfera, Moscow, 2004) [in Russian].Google Scholar
  50. 50.
    S. L. Bazhenov and V. V. Kozey, J. Mater. Sci. 26, 2677 (1991).CrossRefGoogle Scholar
  51. 51.
    A. Tabiei and G. Nilakantan, Appl. Mech. Rev. 61, 010801–1 (2008).CrossRefGoogle Scholar
  52. 52.
    D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers. Their Correlations with Chemical Structure (Elsevier, Amsterdam, 2009).Google Scholar
  53. 53.
    A. B. Strong, Fundamentals of Composites Manufacturing (SME, Dearborn, 2008), p. 222.Google Scholar
  54. 54.
    L. C. Lin, A. Bhatnagar, and D. C. Lang, in Proceedings of 33 International SAMPE Symposium, Anaheim, 1988, p. 883.Google Scholar
  55. 55.
    A. V. Bazilevskii, D. D. Meier, and A. N. Rozhkov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaz. 40, 45 (2005).Google Scholar
  56. 56.
    D. Roylance, A. Wilde, and G. Tocci, Text. Res. J. 43, 34 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations