Advertisement

Polymer Science Series A

, Volume 56, Issue 1, pp 48–62 | Cite as

Effect of the structure of a ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer on the characteristics of a local piezoelectric response

  • V. V. KochervinskiiEmail author
  • D. A. Kiselev
  • M. D. Malinkovich
  • A. S. Pavlov
  • N. V. Kozlova
  • N. A. Shmakova
Structure and Properties

Abstract

The surface topography and characteristics of a local piezoelectric-response signal in isotropic films of a ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer with a composition of 94: 6 are studied via scanning probe microscopy. The X-ray diffraction and IR spectroscopy data indicate that crystallization occurs in a mixture of β and γ polymorphic modifications. The exposure of the original film to a dc field bipolar leads to the formation of polarized regions exhibiting low stability. Recrystallization is followed by structural transformations accompanied by conformational transitions. As a result, there is a decrease in the concentration of chain segments in the T3GT3G conformation and, conversely, an increase in the concentration of isomers in the planar zigzag conformation. In addition, the characteristics of the local piezoelectric response after polarization become more stable, while the signal undergoes phase reversal. A second-harmonic piezoelectric response signal induced by the electrostriction effect is detected for the studied ferroelectric polymer samples. It is found that the original film has two types of regions that contribute to the measured signal. A change in the pattern of the second-harmonic piezoelectric-response signal in the recrystallized film is attributed to a change in the contribution of the electrostriction effect to the macroscopic piezoelectric response.

Keywords

Amorphous Phase Polymer Science Series Harmonic Signal Piezoelectric Response Crystallizable Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Application of Ferroelectric Polymers, Ed. by T. T. Wang, J. M. Herbert, and A. M. Glass (Blackie, Glasgow, 1988).Google Scholar
  2. 2.
    Ferroelectric Polymers — Chemistry, Physics and Applications, Ed. by H. S. Nalva (Marcel Dekker, New York, 1995).Google Scholar
  3. 3.
    V. V. Kochervinskii, Kristallografiya 48, 699 (2003).Google Scholar
  4. 4.
    V. V. Kochervinskii, Polym. Sci., Ser. B 45, 326 (2003).Google Scholar
  5. 5.
    V. V. Kochervinskii, Usp. Khim. 63, 383 (1994).CrossRefGoogle Scholar
  6. 6.
    V. V. Kochervinskii, Usp. Khim. 68, 821 (1999).CrossRefGoogle Scholar
  7. 7.
    V. V. Kochervinskii, Crystallogr. Rep., Suppl. 54, 1146 (2009).CrossRefGoogle Scholar
  8. 8.
    V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).CrossRefGoogle Scholar
  9. 9.
    V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, V. F. Romadin, E. M. Murasheva, Yu. K. Ovchinnikov, N. A. Trofimov, and B. V. Lokshin, Vysokomol. Soedin., Ser. A 30, 1969 (1988).Google Scholar
  10. 10.
    V. V. Kochervinskii, N. V. Kozlova, A. Yu. Khnykov, M. A. Shcherbina, S. N. Sulyanov, and K. A. Dembo, J. Appl. Polym. Sci. 116, 695 (2010).Google Scholar
  11. 11.
    V. V. Kochervinskii, E. V. Chubunova, Yu. Yu. Lebedinskii, N. A. Shmakova, and A. Yu. Khnykov, Polym. Sci., Ser. A 53, 912 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Fukuma, K. Kobayashi, H. Yamada, and K. Matsushige, Jpn. J. Appl. Phys. 39, 3830 (2000).CrossRefGoogle Scholar
  13. 13.
    T. Fukuma, K. Kobayashi, T. Horiuchi, and K. Matsushige, Thin Solid Films 397, 133 (2001).CrossRefGoogle Scholar
  14. 14.
    T. Bai and S. Ducharme, Appl. Phys. Lett. 85, 3528 (2004).CrossRefGoogle Scholar
  15. 15.
    G. D. Zhu, Z. G. Zheng, L. Zhang, and X. J. Yan, Appl. Surf. Sci. 254, 2487 (2008).CrossRefGoogle Scholar
  16. 16.
    V. S. Bystrov, I. K. Bdikin, D. A. Kiselev, S. Yudin, and V. M. Fridkin, J. Phys. D: Appl. Phys. 40, 4571 (2007).CrossRefGoogle Scholar
  17. 17.
    B. J. Rodriguez, S. Jesse, S. V. Kalinin, J. Kim, S. Ducharme, and V. M. Fridkin, Appl. Phys. Lett. 90, 122904 (2007).CrossRefGoogle Scholar
  18. 18.
    P. Sharma, T. J. Reece, S. Ducharme, and A. Gruverman, Nano Lett. 11, 1970 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Sharma, D. Wu, S. Poddar, T. J. Reece, S. Ducharme, and A. Gruverman, J. Appl. Phys. 110, 052010-1 (2011).Google Scholar
  20. 20.
    H. Choi, S. Hong, T.-H. Sung, and K. No, Appl. Phys. Lett. 99, 092905-1 (2011).Google Scholar
  21. 21.
    P. Guthner and K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992).CrossRefGoogle Scholar
  22. 22.
    K. Kimura and K. Kobayashi, Appl. Phys. Lett. 82, 4050 (2003).CrossRefGoogle Scholar
  23. 23.
    X. Q. Chen, H. Yamada, Y. Terai, T. Horiuchi, K. Matsushige, and P. S. Weiss, Thin Solid Films 353, 259 (1999).CrossRefGoogle Scholar
  24. 24.
    X. Q. Chen, H. Yamada, T. Horiuchi, K. Matsushige, S. Watanabe, M. Kawai, and P. S. Weiss, J. Vac. Sci. Technol. 8, 1930 (1999).CrossRefGoogle Scholar
  25. 25.
    S. Tasaka and S. Miyata, Ferroelectrics 32, 17 (1981).CrossRefGoogle Scholar
  26. 26.
    Y. Wada, Ferroelectrics 57, 343 (1984).CrossRefGoogle Scholar
  27. 27.
    E. Benedetti, A. D’Alessio, C. Bertolutti, P. Vergamini, N. Del Fanti, M. Pianca, and G. Moggi, Polym. Bull. (Berlin) 22, 645 (1989).CrossRefGoogle Scholar
  28. 28.
    B. L. Farmer, A. J. Hopfinger, and J. B. Lando, J. Appl. Phys. 43, 4293 (1972).CrossRefGoogle Scholar
  29. 29.
    L. T. Chen and C. W. Frank, Ferroelectrics 57, 51 (1984).CrossRefGoogle Scholar
  30. 30.
    A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, Polymer 28, 61 (1987).CrossRefGoogle Scholar
  31. 31.
    D. T. Grubb and K. W. Choi, J. Appl. Phys. 52, 5908 (1981).CrossRefGoogle Scholar
  32. 32.
    D. T. Grubb, P. Chebe, and K. W. Choi, Ferroelectrics 57, 12 (1984).CrossRefGoogle Scholar
  33. 33.
    R. Gregorio and M. J. Cestari, J. Polym. Sci., Part B: Polym. Phys. 32, 859 (1994).CrossRefGoogle Scholar
  34. 34.
    A. Salimi and A. A. Yousefi, J. Appl. Polym. Sci. 42, 3487 (2004).Google Scholar
  35. 35.
    V. V. Kochervinskii, B. V. Lokshin, C. P. Palto, and S. G. Yudin, Polym. Sci., Ser. A 42, 163 (2000).Google Scholar
  36. 36.
    M. Benz and W. B. Euler, J. Appl. Polym. Sci. 89, 1093 (2003).CrossRefGoogle Scholar
  37. 37.
    M. Benz, W. B. Euler, and O. J. Gregory, Macromolecules 35, 2682 (2002).CrossRefGoogle Scholar
  38. 38.
    V. V. Kochervinskii, B. V. Lokshin, C. P. Palto, G. N. Andreev, L. M. Blinov, and N. N. Pethukhova, Polym. Sci., Ser. A 41, 832 (1999).Google Scholar
  39. 39.
    I. V. Kumpanenko and N. V. Chukanov, Usp. Khim. 1, 1627 (1981).Google Scholar
  40. 40.
    R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, J. Phys. Chem. B 101, 10141 (1997).CrossRefGoogle Scholar
  41. 41.
    V. V. Kochervinskii, I. A. Malyshkina, G. V. Markin, and N. D. Gavrilova, J. Appl. Polym. Sci. 105, 1101 (2007).CrossRefGoogle Scholar
  42. 42.
    V. Kochervinskii, I. Malyshkina, N. Gavrilova, S. Sulyanov, and N. Bessonova, J. Non-Cryst. Solids 353, 4443 (2007).CrossRefGoogle Scholar
  43. 43.
    V. Kochervinskii and I. Malyshkina, J. Non-Cryst. Solids 356, 564 (2010).CrossRefGoogle Scholar
  44. 44.
    Li-Jie, C. Baur, B. Koslowski, and K. Dransfeld, Physica B (Amsterdam) 204, 318 (1995).CrossRefGoogle Scholar
  45. 45.
    Li-Jie, B. Koslowski, R. Moller, G. V. Eynatten, and K. Dransfeld, Ferroelectrics 127, 1 (1992).CrossRefGoogle Scholar
  46. 46.
    H. von Seggern and S. N. Fedosov, Appl. Phys. Lett. 81, 2830 (2002).CrossRefGoogle Scholar
  47. 47.
    H. von Seggern and S. N. Fedosov, IEEE Trans. Dielectr. Electr. Insul. 11, 232 (2004).CrossRefGoogle Scholar
  48. 48.
    V. V. Kochervinskii, E. V. Chubunova, Yu. Yu. Lebedinskii, and N. A. Shmakova, Polym. Sci., Ser. A 53, 912 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Kochervinskii
    • 1
    Email author
  • D. A. Kiselev
    • 2
  • M. D. Malinkovich
    • 2
  • A. S. Pavlov
    • 1
  • N. V. Kozlova
    • 1
  • N. A. Shmakova
    • 1
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.Moscow Institute of Steel and Alloys (National University of Science and Technology)MoscowRussia

Personalised recommendations