Polymer Science Series A

, Volume 56, Issue 1, pp 98–110 | Cite as

Application of large amplitude oscillatory shear for the analysis of polymer material properties in the nonlinear mechanical behavior

  • S. O. Ilyin
  • A. Ya. Malkin
  • V. G. Kulichikhin
Research Methods


The results of studying the nonlinear viscoelastic properties obtained through the generation of large strain amplitudes are interpreted via plotting of Lissajous-Bowditch figures in two different systems of coordinates: (i) stress versus strain and (ii) the derivative of stress with respect to the phase angle versus strain. The former system yields the integral characteristic of dissipative loss in the deformation cycle, and the latter yields a measure of elasticity of a material. The generality of such approach to analyze large deformations, even in the case of an extremely complex shape of the nonlinear response, is due to the fact that it is not related to the a priori choice of any rheological constitutive equation. The developed method was tested on supramolecular structures and polymer solutions and melts. Novel results allow estimation of the character of nonlinearity development, i.e., the dependences of pseudoplasticity, dilatancy, and stiffening or softening of the medium on the shear. The comparison between the proposed measures of nonlinearity and large strain nonlinearity characteristics described in the literature shows that the integral characteristics are in good qualitative agreement with other measures of nonlinearity. However, in some cases, the proposed approach gives a more objective and consistent estimation than other measures of nonlinearity give.


Polymer Science Series Strain Amplitude HDPE Complex Viscosity Large Amplitude Oscillatory Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
  2. 2.
    A. Ya. Malkin and A. Isaev, Rheology: Conceptions, Methods, Applications (Professiya, St. Petersburg, 2010) [in Russian].Google Scholar
  3. 3.
    B. Gross, Mathematical Structure of the Theories of Viscoelasticity (Hermann, Paris, 1953).Google Scholar
  4. 4.
    N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior (Springer, Berlin, 1989).CrossRefGoogle Scholar
  5. 5.
    C. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wil- helm, Macromolecules 40, 4250 (2007).CrossRefGoogle Scholar
  6. 6.
    K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, J. Non-Newtonian Fluid Mech. 107, 51 (2002).CrossRefGoogle Scholar
  7. 7.
    V. Carrier and G. Petekidis, J. Rheol. (N. Y.) 53, 245 (2009).CrossRefGoogle Scholar
  8. 8.
    I. Masalova, R. Foudazi, and A. Ya. Malkin, Colloids Surf. A 375, 76 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Laurati, S. U. Egelhaaf, and G. Petekidis, J. Rheol. (N. Y.) 55, 673 (2011).CrossRefGoogle Scholar
  10. 10.
    W. Philippoff, Trans. Soc. Rheol. 10, 317 (1966).CrossRefGoogle Scholar
  11. 11.
    S. N. Ganeriwala and C. A. Rotz, Polym. Eng. Sci. 27, 165 (1987).CrossRefGoogle Scholar
  12. 12.
    M. Wilhelm, Macromol. Mater. Eng. 287, 83 (2002).CrossRefGoogle Scholar
  13. 13.
    A. Ya. Malkin, Rheol. Acta 43, 1 (2004).CrossRefGoogle Scholar
  14. 14.
    R. H. Ewoldt, H. C. Clasen, A. E. Hosoi, and G. H. McKinley, Soft Matter 3, 634 (2007).CrossRefGoogle Scholar
  15. 15.
    R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, J. Rheol. (N. Y.) 52, 1427 (2008).CrossRefGoogle Scholar
  16. 16.
    R. H. Ewoldt, P. Winter, J. Maxey, and G. H. McKinley, Rheol. Acta 49, 191 (2010).CrossRefGoogle Scholar
  17. 17.
    S. A. Rogers and M. P. Lettinga, J. Rheol. (N. Y.) 56, 1 (2012).CrossRefGoogle Scholar
  18. 18.
    A. K. Gurnon and N. J. Wagner, J. Rheol. (N. Y.) 56, 333 (2012).CrossRefGoogle Scholar
  19. 19.
    T. S. K. Ng, G. H. McKinley, and R. H. Ewoldt, J. Rheol. (N. Y.) 55, 627 (2011).CrossRefGoogle Scholar
  20. 20.
    S. O. Ilyin, V. M. Spiridonova, V. S. Savelyeva, M. M. Ovchinnikov, S. D. Khizhnyak, E. I. Frenkin, P. M. Pakhomov, and A. Ya. Malkin, Colloid J. 73, 646 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Ilyin, T. Roumyantseva, V. Spiridonova, A. Semakov, E. Frenkin, A. Malkin, and V. Kulichikhin, Soft Matter 7, 9090 (2011).CrossRefGoogle Scholar
  22. 22.
    P. C. F. Møller, S. Rodts, M. A. J. Michels, and D. Bonn, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 77, 041507 (2008).CrossRefGoogle Scholar
  23. 23.
    A. Fall, J. Paredes, and D. Bonn, Phys. Rev. Lett. 105, 225502 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Paredes, N. Shahidzadeh-Bonn, and D. Bonn, J. Phys.: Condens. Matter 23, 284116 (2011).Google Scholar
  25. 25.
    A. Malkin, S. Ilyin, A. Semakov, and V. Kulichikhin, Soft Matter 8, 2607 (2012).CrossRefGoogle Scholar
  26. 26.
    S. Ilyin, V. Kulichikhin, and A. Malkin, Appl. Rheol. 24, 13653 (2014).Google Scholar
  27. 27.
    A. Ya. Malkin, A. V. Semakov, and V. G. Kulichikhin, Rheol. Acta 50, 485 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Ya. Malkin, A. V. Semakov, and V. G. Kulichikhin, Appl. Rheol. 22, 32575 (2012).Google Scholar
  29. 29.
    A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kuli- chikhin, Macromolecules 46, 257 (2013).CrossRefGoogle Scholar
  30. 30.
    S. O. Ilyin, V. G. Kulichikhin, and A. Ya. Malkin, Polym. Sci., Ser. A 55, 503 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Ya. Malkin, J. Non-Newtonian Fluid Mech. 192, 48 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • A. Ya. Malkin
    • 1
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations