Polymer Science Series A

, Volume 55, Issue 7, pp 427–437 | Cite as

The physicochemical properties of polyhydroxyalkanoates with different chemical structures

  • T. G. Volova
  • N. O. Zhila
  • E. I. Shishatskaya
  • P. V. Mironov
  • A. D. Vasil’ev
  • A. G. Sukovatyi
  • A. J. Sinskey
Structure, Properties


A set of polyhydroxyalkanoates are synthesized, and a comparative study of their physicochemical properties is performed. The molecular masses and polydispersities of polyhydroxyalkanoates are found to be independent of their chemical structures. It is shown that the temperature characteristics and degrees of crystallinity of polyhydroxyalkanoates are affected by the chemical compositions of the monomers and their quantitative contents in the polymers. The incorporation of 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate units into the chain of poly(3-hydroxybutyrate) decreases its melting point and thermal degradation temperature relative to these parameters of a homogeneous poly(3-hydroxybutyrate) sample (175 ± 5°C and 275 ± 5°C, respectively). The higher the content of the second monomer units in the poly(3-hydroxybutirate) chain, the greater the changes. The degrees of crystallinity of polyhydroxyalkanoate copolymers are generally lower than that of poly(3-hydroxybutyrate) (75 ± 5%). The effect on the ratio of the amorphous and crystalline phases of the copolymer samples becomes more pronounced in the series 3-hydroxy-valerate-3-hydroxyhexanoate-4-hydroxybutyrate. The prepared samples exhibit different properties ranging from rigid thermoplastic materials to engineering elastomers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chanprateep, J. Biosci. Bioeng. 110, 621 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Sudesh, H. Abe, and Y. Doi, Prog. Polym. Sci. 25, 1503 (2000).CrossRefGoogle Scholar
  3. 3.
    T. G. Volova and E. I. Shishatskaya, Degradable Biopolymers: Synthesis, Properties, Application (Krasnoyarskii Pisatel, Krasnoyarsk, 2011) [in Russian].Google Scholar
  4. 4.
    D. Byrom, Trends Biotechnol. 5, 246 (1987).CrossRefGoogle Scholar
  5. 5.
    J. Asrar, H. E. Valentin, P. A. Berger, M. Tran, S. R. Padgette, and J. R. Garbow, Biomacromolecules 3, 1006 (2002).CrossRefGoogle Scholar
  6. 6.
    S. Philip, T. Keshavarz, and I. Roy, J. Chem. Technol. Biotechnol. 82, 233 (2007).CrossRefGoogle Scholar
  7. 7.
    T. G. Volova, E. I. Shishatskaya, N. O. Zhila, and A. G. Sukovatyi, Registration Certificate. Method of Testing of Remote Objects [A Database] (Federal Service for Intellectual Property (Rospatent), Moscow, 2011).Google Scholar
  8. 8.
    H. Mitomo, W.-C. Hsieh, K. Nishiwaki, K. Kasuya, and Y. Doi, Polymer 42, 3455 (2001).CrossRefGoogle Scholar
  9. 9.
    N. Tanadchangsaeng, A. Kitagawa, T. Yamamoto, H. Abe, and T. Tsuge, Biomacromolecules 10, 2866 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Chanprateep, K. Buasri, A. Muangwong, and P. Utiswannakul, Polym. Degrad. Stab. 95, 2003 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Vigneswari, S. Vijaya, M. I. A. Majid, K. Sudesh, C. S. Sipaut, M. N. M. Azizan, and A. A. Amirul, J. Ind. Microb. Biotechnol. 36, 547 (2009).CrossRefGoogle Scholar
  12. 12.
    S. Akhtar, C. W. Pouton, and L. J. Notarianni, Polymer 33, 117 (1992).CrossRefGoogle Scholar
  13. 13.
    W. Zhao and G.-Q. Chen, Proc. Biochem. 42, 1342 (2007).CrossRefGoogle Scholar
  14. 14.
    H.-F. Zhang, L. Ma, Z.-H. Wang, and G.-Q. Chen, Biotechnol. Bioeng. 104, 582 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Chanprateep and S. Kulpreecha, J. Biosci. Bioeng. 101, 51 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Doi, Microbial Polyesters (VCH, Yokohama, 1990).Google Scholar
  17. 17.
    M. Avella, E. Martuscelli, and M. Raimo, J. Mater. Sci. 35, 523 (2000).CrossRefGoogle Scholar
  18. 18.
    T. Tsuge, J. Biosci. Bioeng. 94, 579 (2002).Google Scholar
  19. 19.
    S. Nakamura, Y. Doi, and M. Scandola, Macromolecules 25, 4237 (1992).CrossRefGoogle Scholar
  20. 20.
    R. Luo, J. Chen, L. Zhang, and G. Chen, Biochem. Eng. J. 32, 218 (2006).CrossRefGoogle Scholar
  21. 21.
    I. Noda, P. R. Green, M. M. Satkowski, and L. A. Schechtman, Biomacromolecules 6, 580 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Dai, Z. Yuan, K. Jack, and J. Keller, J. Biotechnol. 129, 489 (2007).CrossRefGoogle Scholar
  23. 23.
    T. Fukui, H. Abe, and Y. Doi, Biomacromolecules 3, 618 (2002).CrossRefGoogle Scholar
  24. 24.
    T. G. Volova and G. S. Kalacheva, Mikrobiologiya 74, 63 (2005).Google Scholar
  25. 25.
    T. G. Volova, G. S. Kalacheva, and A. Steinbuchel, Macromol. Symp. 269, 1 (2008).CrossRefGoogle Scholar
  26. 26.
    T. G. Volova, N. O. Zhila, G. S. Kalacheva, V. A. Soko- lenko, and A. J. Sinskey, Prikl. Biokhim. Mikrobiol. 47, 544 (2011).Google Scholar
  27. 27.
    T. G. Volova, P. V. Mironov, and A. D. Vasil’ev, Perspekt. Mater., No. 5, 35 (2006).Google Scholar
  28. 28.
    T. G. Volova, G. S. Kalacheva, I. V. Kozhevnikov, and A. Shtainbyukhel’, Mikrobiologiya 76, 316 (2007).Google Scholar
  29. 29.
    T. G. Volova, Microbial Polyhydroxyalkanoates — Plastic Materials of the 21st Century (Biosynthesis, Properties, Applications) (Nova Sci., New York, 2004).Google Scholar
  30. 30.
    T. G. Volova, M. Y. Trusova, G. S. Kalacheva, and I. V. Kozhevnikov, Appl. Microbiol. Biotechnol. 73, 429 (2006).CrossRefGoogle Scholar
  31. 31.
    P. G. De Gennes, Usp. Fiz. Nauk 151, 619 (1987).CrossRefGoogle Scholar
  32. 32.
    A. Smith, Applied Infrared Spectroscopy (Wiley, New York, 1979).Google Scholar
  33. 33.
    T. L. Lebedeva, A. L. Iordanskii, and A. V. Krivandin, Vysokomol. Soedin., Ser. A 36, 1113 (1994).Google Scholar
  34. 34.
    A. L. Iordanskii and P. P. Komaev, Polymer Sci., Ser. B 41, 39 (1999).Google Scholar
  35. 35.
    Y. Yuan and E. Ruckenstein, Polymer 39, 1893 (1997).CrossRefGoogle Scholar
  36. 36.
    A. M. Ashraf, S. S. Gamal, and H. H. Amany, Polymer 40, 5377 (1999).CrossRefGoogle Scholar
  37. 37.
    S. Akhtar, C. W. Pouton, and L. J. Notarianni, Polymer 33, 117 (1992).CrossRefGoogle Scholar
  38. 38.
    M. Scandola, G. Ceccorulli, M. Pizzoli, and M. Gazzano, Macromolecules 25, 1405 (1992).CrossRefGoogle Scholar
  39. 39.
    Y. Saito and Y. Doi, Int. J. Biol. Macromol. 16, 99 (1994).CrossRefGoogle Scholar
  40. 40.
    Y. Saito, S. Nakamura, M. Hiramitsu, and Y. Doi, Polym. Int. 39, 169 (1996).CrossRefGoogle Scholar
  41. 41.
    J. D. Andrade, D. E. Gregonis, and L. M. Smith, Surface and Interfacial Aspects of Biomedical Polymers (Plenum, New York, 1985).CrossRefGoogle Scholar
  42. 42.
    W. Ou, H. Qiu, Z. Chen, and K. Xu, Biomaterials 32, 3178 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • T. G. Volova
    • 1
    • 2
  • N. O. Zhila
    • 1
    • 2
  • E. I. Shishatskaya
    • 1
    • 2
  • P. V. Mironov
    • 3
  • A. D. Vasil’ev
    • 4
  • A. G. Sukovatyi
    • 1
  • A. J. Sinskey
    • 1
    • 5
  1. 1.Institute of Biophysics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Fundamental Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussia
  3. 3.Siberian State Technological UniversityKrasnoyarskRussia
  4. 4.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  5. 5.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations