Polymer Science Series A

, Volume 55, Issue 6, pp 404–414 | Cite as

Heating of polymers during neck propagation

  • S. L. BazhenovEmail author
  • A. S. Kechek’yan
Structure and Properties


The heating of polyethylene terephthalate, polyamide-66, and polyamide-6 during tensile drawing at room temperature was studied theoretically and experimentally. At a low draw rate, the necking temperature was close to the temperature of the surrounding air. An increase in the rate results in the transition to the adiabatic conditions of drawing. A necking temperature of 140°C was experimentally recorded in polyethylene terephthalate at a draw rate of 1000 mm/min and during the approach to the adiabatic conditions of drawing. A formula describing the dependence of the necking temperature on the draw rate was derived. The resulting value agreed fairly well with the theoretical estimation of the temperature. The drawing (strain) ratio in the neck and the draw stress are the crucial parameters determining the temperature. The rate of the transition to the adiabatic conditions of drawing was determined. The temperatures of adiabatic heating for various polymers were calculated. The increases in the temperatures of polycarbonate and low- and high-density polyethylene are relatively low. The increases in temperature can be regarded as moderate for polypropylene and polyvinyl chloride, while they attain the highest values in polyamide-6 and polyethylene terephthalate owing to the high draw ratios in the neck and the high draw-stress values.


Polymer Science Series HDPE LDPE Draw Ratio PETP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Thomson, Trans. R. Soc. Edinburg 20, 261 (1853).CrossRefGoogle Scholar
  2. 2.
    J. W. Maher, R. N. Haward, and J. N. Hay, J. Polym. Sci., Part B: Polym. Phys. 18, 2169 (1980).CrossRefGoogle Scholar
  3. 3.
    G. W. Adams and R. J. Farris, J. Polym. Sci., Part B: Polym. Phys. 26, 433 (1988).CrossRefGoogle Scholar
  4. 4.
    R. N. Haward, Thermochim. Acta 247, 87 (1994).CrossRefGoogle Scholar
  5. 5.
    L. A. Laius, A. I. Slutsker, V. L. Gilyarov, and V. P. Volodin, Vysokomol. Soedin., Ser. A 39, 1812 (1997).Google Scholar
  6. 6.
    S. Hillmansen and R. N. Haward, Polymer 42, 9301 (2001).CrossRefGoogle Scholar
  7. 7.
    R. N. Haward, J. Mater. Sci. 38, 2155 (2003).CrossRefGoogle Scholar
  8. 8.
    F. H. Muller and K. Jackel, Kolloid Z. Z. Polym. 145, 145 (1952).Google Scholar
  9. 9.
    F. H. Muller, Rheology 5, 417 (1969).Google Scholar
  10. 10.
    A. Engelter and F. H. Muller, Kolloid Z. Z. Polym. 157, 89 (1958).CrossRefGoogle Scholar
  11. 11.
    D. Rittel, Mech. Mater. 31, 131 (1999).CrossRefGoogle Scholar
  12. 12.
    B. Wunderlich, Int. J. Thermophys. 28, 958 (2007).CrossRefGoogle Scholar
  13. 13.
    B. Wunderlich, J. Therm. Anal. Calorim. 106, 81 (2011).CrossRefGoogle Scholar
  14. 14.
    P. S. Leevers and M.-A. Godart, J. Mech. Phys. Solids 56, 2149 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Nasraoui, P. Forquin, L. Siad, and A. Rusinek, Mater. Des. 37, 500 (2012).CrossRefGoogle Scholar
  16. 16.
    G. P. Andrianova, Yu. V. Popov, and B. A. Arutyunov, Vysokomol. Soedin., Ser. A 18, 2311 (1976).Google Scholar
  17. 17.
    Yu. K. Godovsky, Thermal Physics of Polymers (Khimiya, Moscow, 1982) [in Russian].Google Scholar
  18. 18.
    Y. K. Godovsky, Thermophysical Properties of Polymers (Springer, Berlin, 1993).Google Scholar
  19. 19.
    O. B. Solomatina, S. I. Nazarenko, S. N. Rudnev, and E. F. Oleinik, Mekh. Kompoz. Mater. (Rizh. Politekh. Inst.), No. 6, 979 (1988).Google Scholar
  20. 20.
    H. C. Rogers, in Encyclopedia of Material Science and Engineering, Ed. by M. R. Bever (Pergamon, Oxford, 1986), Vol. 1, p. 97.Google Scholar
  21. 21.
    H. Brody and I. M. Ward, in Encyclopedia of Material Science and Engineering, Ed. by M. R. Bever (Pergamon, Oxford, 1986), Vol. 2, p. 1226.Google Scholar
  22. 22.
    D. C. Hookway, J. Text. Inst. 49, 292 (1958).CrossRefGoogle Scholar
  23. 23.
    W. Roth and R. Schroth, Faserforsch. Textiltech. 11, 312 (1960).Google Scholar
  24. 24.
    A. S. Kechek’yan, G. P. Andrianova, and V. A. Kargin, Vysokomol. Soedin., Ser. A 12, 2424 (1970).Google Scholar
  25. 25.
    G. P. Andrianova, A. S. Kechekyan, and V. A. Kargin, J. Polym. Sci., Part A-2 9, 1919 (1971).CrossRefGoogle Scholar
  26. 26.
    S. Bazhenov, J. Appl. Polym. Sci. 119, 654 (2011).CrossRefGoogle Scholar
  27. 27.
    I. M. Ward, Mechanical Properties of Solid Polymers (Wiley, London, 1971; Khimiya, Moscow, 1976).Google Scholar
  28. 28.
    I. M. Ward and J. Sweeney, Mechanical Properties of Solid Polymers (Wiley, Chichester, 2004).Google Scholar
  29. 29.
    J. A. Koenen, Thermochim. Acta 247, 55 (1994).CrossRefGoogle Scholar
  30. 30.
    A. Toda, C. Tomita, M. Hirosaka, Y. Hibino, H. Miyaji, C. Nonomura, T. Suzuki, and H. Ishikara, Polymer 43, 947 (2002).CrossRefGoogle Scholar
  31. 31.
    T. Liu and I. R. Harrison, Polymer 29, 233 (1988).CrossRefGoogle Scholar
  32. 32.
    P. Yu. Butyagin, V. V. Garanin, and A. R. Kuznetsov, Vysokomol. Soedin., Ser. A 16, 333 (1974).Google Scholar
  33. 33.
    R. Roseen, J. Mater. Sci. 9, 929 (1974).CrossRefGoogle Scholar
  34. 34.
    D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers. Their Correlations with Chemical Structure (Elsevier, Amsterdam, 2009).Google Scholar
  35. 35.
    A. Toda, Polymer 35, 3638 (1994).CrossRefGoogle Scholar
  36. 36.
    S. L. Bazhenov, Yu. A. Rodionova, A. S. Kechek’yan, and A. K. Rogozinskii, Polymer Science, Ser. A 47, 692 (2005).Google Scholar
  37. 37.
    T. Pakula and E. W. Fischer, J. Polym. Sci., Part B: Polym. Phys. 19, 1705 (1981).CrossRefGoogle Scholar
  38. 38.
    S. L. Bazhenov and A. S. Kechek’yan, Polymer Science, Ser. A 43, 52 (2001).Google Scholar
  39. 39.
    V. A. Mikhel’son, On the Normal Rate of Detonating Gas Mixture Inflammation (Novyi Agronom, Moscow, 1930), Vol. 1 [in Russian].Google Scholar
  40. 40.
    S. L. Bazhenov, Yu. A. Rodionova, and A. S. Kechek’yan, Polymer Science, Ser. A 45, 635 (2003).Google Scholar
  41. 41.
    L. M. Yarysheva, L. Yu. Pazukhina, R. N. Stoches, T. E. Zavarova, N. F. Bakeev, and P. V. Kozlov, Vysokomol. Soedin., Ser. A 24, 2156 (1982).Google Scholar
  42. 42.
    S. N. Chvalun, Yu. A. Zubov, and N. F. Bakeev, Vysokomol. Soedin., Ser. A 35, 285 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations