Advertisement

Polymer Science Series A

, Volume 55, Issue 2, pp 121–126 | Cite as

Change in the structure of oriented poly(vinyl alcohol) fibers impregnated with potassium bisulfate during heat treatment in air

  • D. V. PetkievaEmail author
  • G. G. Alkhanishvili
  • T. S. Kurkin
  • A. N. Ozerin
  • N. S. Perov
  • T. A. Rudakova
Composites

Abstract

The structural transformations of oriented PVA fibers impregnated with potassium bisulfate during their heat treatment in air to a temperature of 600°C were studied. The preliminary thermal stabilization of the impregnated fibers was conducted in air at 215°C for 1 h with maintenance of a high degree of orientation of the fibers. The melting peak of the preliminarily thermally stabilized impregnated PVA fibers is completely suppressed during their subsequent heat treatment in air, and the yields of coke residue are 48 and 43% of the thermally stabilized fiber mass at 500 and 600°C, respectively.

Keywords

Heat Treatment Polymer Science Series Thermal Oxidation Vinyl Alcohol Coke Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Morgan, Carbon Fibers and Their Composites (Taylor and Francis, Boca Raton, 2005).CrossRefGoogle Scholar
  2. 2.
  3. 3.
    A. Shindo, Y. Nakanishi, and I. Soma, Appl. Polym. Symp. 9, 305 (1969).Google Scholar
  4. 4.
    I. N. Ermolenko, I. P. Lyubliner, and N. V. Gul’ko, Chemically Modified Carbon Fibres and Their Applications (Nauka i Tekhnika, Minsk, 1982; VCH, Germany, 1990), Chap. 5. p. 153.Google Scholar
  5. 5.
    I. Mladenov and M. Lyubcheva, J. Polym. Sci., Part A: Polym. Chem. 21, 1223 (1983).CrossRefGoogle Scholar
  6. 6.
    T. V. Druzhinina and I. M. Kharchenko, Khim. Volokna, No. 5, 23 (2010).Google Scholar
  7. 7.
    S. J. Zhang, H. M. Feng, J. P. Wang, and H. Q. Yu, J. Colloid Interface Sci. 321, 96 (2008).CrossRefGoogle Scholar
  8. 8.
    R. Devasia, C. P. Reghunadhan Nair, R. Sadhana, N. S. Babu, and K. N. Ninan, J. Appl. Polym. Sci. 100, 3055 (2006).CrossRefGoogle Scholar
  9. 9.
    J. D. Cho, W. S. Lyoo, S. N. Chvalun, and J. Blackwell, Macromolecules 32, 6236 (1999).CrossRefGoogle Scholar
  10. 10.
    A. A. Konkin, Refractory Carbon and Alternative Fibers (Khimiya, Moscow, 1974) [in Russian].Google Scholar
  11. 11.
    E. Yu. Savel’eva and T. V. Druzhinina, Khim. Volokna, No. 1, 15 (2003).Google Scholar
  12. 12.
    I. P. Dobrovol’skaya, Doctoral Dissertation in Mathematics and Physics (St. Petersburg, 2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. V. Petkieva
    • 1
    Email author
  • G. G. Alkhanishvili
    • 2
  • T. S. Kurkin
    • 2
  • A. N. Ozerin
    • 2
  • N. S. Perov
    • 2
  • T. A. Rudakova
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations