Polymer Science Series A

, Volume 54, Issue 9, pp 767–777 | Cite as

Self-assembly of polymer layers with mobile grafting points: Computer simulation

  • M. K. Glagolev
  • V. V. Vasilevskaya
  • A. R. Khokhlov


The Monte Carlo method is used to study macromolecule layers with mobile grafting points during deterioration in the solvent quality. If the chains are rigidly grafted onto the surface, the micelle core is bonded to the surface through chain fragments that are strongly extended along the surface, but if the points are fairly mobile, the micelles are dense aggregates maximally segregated from the surface. In addition, an increase in the mobility of the chains leads to increase in the mean aggregation number of the micelles, its dispersion, and height of the aggregate.


Contact Angle Polymer Science Series Monomer Unit Polymer Layer Aggregation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kanazawa, Y. Matsushima, and T. Okano, Trac Trends Anal. Chem. 17, 435 (1998).CrossRefGoogle Scholar
  2. 2.
    A. Kumar, A. Srivastava, I. Yu. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).CrossRefGoogle Scholar
  3. 3.
    B. Zhao and W. J. Brittain, Macromolecules 33, 8813 (2000).CrossRefGoogle Scholar
  4. 4.
    B. Zhao, W. J. Brittain, W. Zhou, and S. Z. D. Cheng, Macromolecules 33, 8821 (2000).CrossRefGoogle Scholar
  5. 5.
    B. Zhao, W. J. Brittain, W. Zhou, and S. Z. D. Cheng, J. Am. Chem. Soc. 122, 2407 (2000).CrossRefGoogle Scholar
  6. 6.
    W. J. Brittain, S. G. Boyes, A. M. Granville, M. Baum, B. K. Mirous, B. Akgun, B. Zhao, C. Blickle, and M. D. Foster, Adv. Polym. Sci. 198, 125 (2006).CrossRefGoogle Scholar
  7. 7.
    X. Gao, W. Feng, S. Zhu, H. Sheardown, and J. L. Brash, Langmuir 24, 8303 (2008).CrossRefGoogle Scholar
  8. 8.
    P. Yang and Y. Han, Macromol. Rapid Commun. 30, 1509 (2009).CrossRefGoogle Scholar
  9. 9.
    S. B. Rahane, J. A. Floyd, A. T. Metters, and S. M. Kilbey Ii, Adv. Funct. Mater. 18, 1232 (2008).CrossRefGoogle Scholar
  10. 10.
    K. Yu, H. Wang, L. Xue, and Y. Han, Langmuir 23, 1443 (2007).CrossRefGoogle Scholar
  11. 11.
    K. Yu and Y. Han, Soft Matter 5, 759 (2009).CrossRefGoogle Scholar
  12. 12.
    B. M. D. O’Driscoll, G. H. Griffiths, M. W. Matsen, S. Perrier, V. Ladmiral, and I. W. Hamley, Macromolecules 43, 8177 (2010).CrossRefGoogle Scholar
  13. 13.
    B. M. D. O’Driscoll, G. E. Newby, and I. W. Hamley, Polym. Chem. 2, 619 (2011).CrossRefGoogle Scholar
  14. 14.
    E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29, 6338 (1996).CrossRefGoogle Scholar
  15. 15.
    E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29, 8254 (1996).CrossRefGoogle Scholar
  16. 16.
    D. Meng and Q. Wang, J. Chem. Phys. 130, 134904 (2009).CrossRefGoogle Scholar
  17. 17.
    Y. Yin, P. Sun, B. Li, T. Chen, Q. Jin, D. Ding, and A.-C. Shi, Macromolecules 40, 5161 (2007).CrossRefGoogle Scholar
  18. 18.
    M. W. Matsen and G. H. Griffiths, Eur. Phys. J. E 29, 219 (2009).CrossRefGoogle Scholar
  19. 19.
    O. A. Guskova and C. Seidel, Macromolecules 44, 671 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Brown, A. Chakrabarti, and J. F. Marko, Macromolecules 28, 7817 (1996).CrossRefGoogle Scholar
  21. 21.
    P. G. Ferreira and L. Leibler, J. Chem. Phys. 105, 9362 (1996).CrossRefGoogle Scholar
  22. 22.
    M. Müller, in Handbook of Materials Modeling, Ed. by S. Yip (Springer, Berlin, 2005), p. 2599.CrossRefGoogle Scholar
  23. 23.
    V. Ermilov, A. Lazutin, and A. Halperin, Macromolecules 43, 3511 (2010).CrossRefGoogle Scholar
  24. 24.
    E. Tsuchida and K. Abe, Adv. Polym. Sci. 45, 1 (1982).CrossRefGoogle Scholar
  25. 25.
    F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
  26. 26.
    I. Ya. Erukhimovich and A. R. Khokhlov, Polymer Science, Ser. A 35, 1522 (1993) [Vysokomol. Soedin., Ser. A 35, 1808 (1993)].Google Scholar
  27. 27.
    K. Binder, Adv. Polym. Sci. 112, 181 (1994).CrossRefGoogle Scholar
  28. 28.
    M. G. Brereton and T. A. Vilgis, J. Phys. I 2, 581 (1992).CrossRefGoogle Scholar
  29. 29.
    I. Ya. Erukhimovich and A. V. Dobrynin, Pis’ma Zh. Eksp. Teor. Fiz. 57, 116 (1993).Google Scholar
  30. 30.
    A. V. Dobrynin and I. Ya. Erukhimovich, Zh. Eksp. Teor. Fiz. 104, 2838 (1993).Google Scholar
  31. 31.
    V. V. Vasilevskaya, A. A. Klochkov, P. G. Khalatur, A. R. Khokhlov, and G. Brinke, Macromol. Theory Simul. 10, 389 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. K. Glagolev
    • 1
    • 2
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations