Polymer Science Series A

, Volume 54, Issue 8, pp 671–677 | Cite as

Macrochain configuration, stucture of free volume and transport properties of poly(1-trimethylsilyl-1-propyne) and poly(1-trimethylgermyl-1-propyne)

  • S. M. Matson
  • K. Rätzke
  • M. Q. Shaikh
  • E. G. Litvinova
  • S. M. Shishatskiy
  • K. -V. Peinemann
  • V. S. Khotimskiy
Transport in Polymers


The relationship between poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-trimethylgermyl-1-propyne) (PTMGP) microstructure, gas permeability and structure of free volume is reported. n-Butane/methane mixed-gas permeation properties of PTMSP and PTMGP membranes with different cis-/trans-composition have been investigated. The n-butane/methane selectivities for mixed gas are by an order higher than the selectivities calculated from pure gas measurements (the mixed-gas n-butane/methane selectivities are 20–40 for PTMSP and 22–35 for PTMGP). Gas permeability and n-butane/methane selectivity essentially differ in polymers with different cis-/trans-composition. Positron annihilation lifetime spectroscopy investigation of PTMSP and PTMGP with different microstructure has determined distinctions in total amount and structure of free volume, i.e. distribution of free volume elements. The correlation between total amount of free volume and gas transport parameters is established: PTMSP and PTMGP with bigger free volume exhibit higher n-butane permeability and mixed-gas n-butane/methane selectivity. Such behavior is discussed in relation to the submolecular structure of polymers with different microstructure and sorption of n-butane in polymers with different free volume.


Free Volume Polymer Science Series Positron Annihilation Lifetime Spectroscopy Mixed Microstructure Trans Unit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Pinnau and L. G. Toy, J. Membr. Sci. 116, 199 (1996).CrossRefGoogle Scholar
  2. 2.
    A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).CrossRefGoogle Scholar
  3. 3.
    T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, Chem. Mater. 15, 109 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 (1985).CrossRefGoogle Scholar
  5. 5.
    T. Masuda, E. Isobe, T. Higashimura, and T. Takada, J. Am. Chem. Soc. 105, 7473 (1983).CrossRefGoogle Scholar
  6. 6.
    N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J. Membr. Sci. 60, 13 (1991).CrossRefGoogle Scholar
  7. 7.
    S. Auvil, R. Srinivasan, and P. M. Burban, Polym. Prepr. 32, 380 (1991).Google Scholar
  8. 8.
    R. Srinivasan, S. Auvil, and P.M. Burban, J. Membr. Sci. 86, 67 (1994).CrossRefGoogle Scholar
  9. 9.
    K. Nagai, L. G. Toy, B. D. Freeman, M. Taraguchi, G. Kwak, T. Masuda, and I. Pinnau, J. Polym. Sci., Part B: Polym. Phys. 40, 2228 (2002).CrossRefGoogle Scholar
  10. 10.
    V. Khotimskiy, M. Chirkova, E. Litvinova, M. Konrad, N. Lecerf, W. Yave, S. Shishatskiy, and K.-V. Peinemann, Desalination 199, 198 (2006).CrossRefGoogle Scholar
  11. 11.
    G. Kwak and T. Masuda, J. Polym. Sci., Part A: Polym. Chem. 38, 2964 (2000).CrossRefGoogle Scholar
  12. 12.
    V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, A. I. Rebrov, and G. N. Bondarenko, J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).CrossRefGoogle Scholar
  13. 13.
    W. Yave, K.-V. Peinemann, S. Shishatskiy, V. Khotimskiy, M. Chirkova, S. Matson, E. Litvinova, and N. Lecerf, Macromolecules 40, 8991 (2007).CrossRefGoogle Scholar
  14. 14.
    Yu. Yampolskii and V. Shantarovich, Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yu. Yampolskii, I. Pinnau, and B.D. Freeman (Wiley, New York, 2006).CrossRefGoogle Scholar
  15. 15.
    T. Emmler, K. Heinrich, D. Fritsch, P. M. Budd, N. Chaukura, D. Ehlers, K. Rätzke, and F. Faupel, Macromolecules 43, 6075 (2010).CrossRefGoogle Scholar
  16. 16.
    S. J. Tao, J. Chem. Phys. 56, 5499 (1972).CrossRefGoogle Scholar
  17. 17.
    Y. C. Jean, Microchem. J. 42, 72 (1990).CrossRefGoogle Scholar
  18. 18.
    J. Kansy, Nucl. Instr. Meth. Phys. Res. A 374, 235 (1996).CrossRefGoogle Scholar
  19. 19.
    M. Rudel, J. Kruse, K. Rätzke, F. Faupel, Yu.P. Yam- polskii, V. P. Shantarovich, and G. Dlubek, Macromolecules 41, 788 (2008).CrossRefGoogle Scholar
  20. 20.
    R. De Miranda, J. Kruse, K. Rätzke, F. Faupel, D. Fritsch, V. P. Abetz, M. J. Budd, D. Selbie, N. B. McKeown, and B. S. Ghanem, Phys. Status Solidi Rapid Res. Lett. 1, 190 (2007).CrossRefGoogle Scholar
  21. 21.
    J. Kruse, K. Rätzke, F. Faupel, D. M. Sterescu, D. F. Stamatialis, and M. Wessling, J. Phys. Chem. Part. B 111, 13914 (2007).CrossRefGoogle Scholar
  22. 22.
    Y. C. Jean, P. E. Mallon, and D. M. Schrader, Principles and Application of Positron and Positronium Chemistry (World Scientific Publishing, Singapore, 2003).CrossRefGoogle Scholar
  23. 23.
    E. G. Litvinova, V. M. Melekhov, N. V. Petrushanskaya, G. V. Roscheva, V. B. Fedotov, V. Sh. Feldblum, and V.S. Khotimskiy, Pat. 1823457 RF (1993).Google Scholar
  24. 24.
    J. Qui, J.-M. Zheng, and K.-V. Peinemann, Macromolecules 39, 4093 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Shishatskii, Y. P. Yampol’skii, and K.-V. Peinemann, J. Membr. Sci. 112, 275 (1996).CrossRefGoogle Scholar
  26. 26.
    D. Hofman, M. Heuchel, Yu. Yampolsii, V. Khotim- skii, and V. Shantarovich, Macromolecules 35, 2129 (2002).CrossRefGoogle Scholar
  27. 27.
    V. P. Shantarovich, I. B. Kevdina, Yu. P. Yampolsii, and A. Yu. Alentiev, Macromolecules 33, 7453 (2000).CrossRefGoogle Scholar
  28. 28.
    V. S. Khotimsky, S. M. Matson, E. G. Litvinova, G. N. Bondarenko, and A.I. Rebrov, Polym. Sci. Ser. A 45, 740 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. M. Matson
    • 1
  • K. Rätzke
    • 2
  • M. Q. Shaikh
    • 2
  • E. G. Litvinova
    • 1
  • S. M. Shishatskiy
    • 3
  • K. -V. Peinemann
    • 4
  • V. S. Khotimskiy
    • 1
  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Technical FacultyUniversity of KielKielGermany
  3. 3.Institute of Polymer ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  4. 4.Advanced Membranes and Porous Materials Center at KAUSTKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations