Polymer Science Series A

, Volume 54, Issue 6, pp 476–492 | Cite as

Rheology of silica-filled polystyrene: From microcomposites to nanocomposites



Rheology and viscoelastic behavior of polystyrene (PS)/silica microcomposites and nanocomposites were studied. The apparent viscosity, transient shear stress growth after startup shear flow and stress relaxation after cessation of flow at various shear rates, the complex dynamic viscosity, the storage and loss moduli at small and large strain amplitudes and various frequencies were performed. The effect of size, shape and volume concentration of silica was discussed. The maximum volume concentration, corresponding to the concentration at which the relative viscosity of mixtures goes to infinity, with respect to the hydrodynamic contribution of the particles and to polymer-filler interactions was obtained. The difference between the yield stress and residual stress is shown. The domain of equivalence between the apparent viscosity as a function of the shear rate in steady state flow and the complex dynamic viscosity as a function of the strain rate amplitude in highly nonlinear region of oscillatory flow was established. The viscoelastic behavior was interpreted based on the morphology of microcomposites and nanocomposites observed by SEM.


Shear Rate Polymer Science Series Strain Amplitude Apparent Viscosity Loss Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Payne and R.E. Whittaker, J. Appl. Poly. Sci. 16, 1191 (1972).CrossRefGoogle Scholar
  2. 2.
    G. V. Vinogradov, A. Ya. Malkin, E. P. Plotnikova, O. Yu. Sabsai, and N. E. Nikolayeva, Int. J. Polym. Mat. 2, 1 (1972).CrossRefGoogle Scholar
  3. 3.
    J. B. Donnet, Rub. Chem. Tech. 71, 323 (1998).CrossRefGoogle Scholar
  4. 4.
    Y. Suetsugu and J. L. White, J. Appl. Polym. Sci. 28, 1481 (1983).CrossRefGoogle Scholar
  5. 5.
    H. Tanaka and J. L. White, Polym. Eng. Sci. 20, 949 (1980).CrossRefGoogle Scholar
  6. 6.
    H. Tanaka and J. L. White, J. Non Newt. Fluid Mech. 7, 333 (1980).CrossRefGoogle Scholar
  7. 7.
    J. Mewis and A. J. B. Spaull, Adv. Colloid Int. Sci. 6, 173 (1976).CrossRefGoogle Scholar
  8. 8.
    J. Mewis and R. de Bleyser, Rheol. Acta 14, 721 (1975).CrossRefGoogle Scholar
  9. 9.
    B. K. Aral and Kalyon, J. Rheol. 41, 599 (1997).CrossRefGoogle Scholar
  10. 10.
    M. I. Aranguren, E. Mora, J. V. DeGroot, and C. W. Macosko, J. Rheol. 36, 1165 (1992).CrossRefGoogle Scholar
  11. 11.
    M. Y. Boluk and H. P. Schrieber, Poly. Comp. 10, 215 (1989).CrossRefGoogle Scholar
  12. 12.
    Y. Bomal and P. Godard, Poly. Eng. Sci. 36, 237 (1996).CrossRefGoogle Scholar
  13. 13.
    C. D. Han, T. Van Den Weghe, P. Shete, and J. R. Haw, Poly. Eng. Sci. 21, 196 (1981).CrossRefGoogle Scholar
  14. 14.
    C. D. Han, C. Sandford, and H. J. Yoo, Poly. Eng. Sci. 18, 849 (1978).CrossRefGoogle Scholar
  15. 15.
    H. P. Schrieber, M. R. Wertheimer, and M. Lambla, J. Appl. Poly. Sci. 27, 2269 (1982).CrossRefGoogle Scholar
  16. 16.
    L. E. Kosinski and J. M. Caruthers, J. Non-Newt. Fluid Mech. 17, 69 (1985).CrossRefGoogle Scholar
  17. 17.
    L. E. Kosinski and J. M. Caruthers, Rheol. Acta 25, 153 (1986).CrossRefGoogle Scholar
  18. 18.
    Y. S. Lipatov, Polymer Reinforcement (ChemTec Publishing, Toronto, 1995).Google Scholar
  19. 19.
    Q. Zhang and L. A. Archer, Langmuir 18(26), 10435 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewicz, S. K. Kumar, and L. S. Schadler, Nature Materials 4, 693 (2005).CrossRefGoogle Scholar
  21. 21.
    S. Sen, Y. Xie, A. Bansal, H. Yang, K. Cho, L. S. Schadler, and S. K. Kumar, Eur. Phys. J. Special Topics 141, 161 (2007).CrossRefGoogle Scholar
  22. 22.
    N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin, and F. Boué, Macromolecules 42(6), 2031 (2009).CrossRefGoogle Scholar
  23. 23.
    G. Havet and A. I. Isayev, Rheol. Acta 40, 570 (2001).CrossRefGoogle Scholar
  24. 24.
    G. Havet and A. I. Isayev, Rheol. Acta 42, 47 (2003).CrossRefGoogle Scholar
  25. 25.
    T. A. Vilgis, Polymer 46, 4223 (2005).CrossRefGoogle Scholar
  26. 26.
    A. S. Sarvestani and E. Jabbari, Macromol. Theory Simul. 16, 378 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Mooney, J. Colloid Sci. 6, 162 (1951).CrossRefGoogle Scholar
  28. 28.
    D. G. Thomas, J. Colloid Sci. 20, 267 (1965).CrossRefGoogle Scholar
  29. 29.
    I. Krieger and T. J. Dougherty, Trans. Soc. Rheol. 3, 137 (1959).CrossRefGoogle Scholar
  30. 30.
    S. H. Maron and P. E. Pierce, J. Colloid. Sci. 11, 80 (1956).CrossRefGoogle Scholar
  31. 31.
    A. B. Metzner, J. Rheol. 29, 739 (1985).CrossRefGoogle Scholar
  32. 32.
    G. V. Vinogradov, A. I. Isayev, and E. V. Katsyutsevich, J. Appl. Polym. Sci. 22(3), 727 (1978).CrossRefGoogle Scholar
  33. 33.
    V. Phillipoff, Trans. Soc. Rheol. 10, 317 (1966).CrossRefGoogle Scholar
  34. 34.
    G. V. Vinogradov, Yu. G. Yanovsky, and A. I. Isayev, J. Polym. Sci. A-2 8, 1239 (1970).CrossRefGoogle Scholar
  35. 35.
    D. Doraiswamy, A. N. Mujumdar, I. Tsao, A. N. Beris, S. C. Danforth, and A. B. Metzner, J. Rheol. 35, 647 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Polymer Engineeringthe University of AkronAkronUSA

Personalised recommendations