Polymer Science Series A

, Volume 54, Issue 5, pp 414–425 | Cite as

Microstructuring of a polymer globule in solution in the presence of an amphiphilic substance

  • E. N. Govorun
  • A. S. Ushakova
  • A. R. Khokhlov
Theory and Modeling

Abstract

Microstructuring in the bulk of a polymer globule in a solution that contains dimeric amphiphilic molecules, in particular, surfactants, is studied in terms of the weak-segregation theory. An inhomogeneous structure can result from a decrease in free energy with the orientation of amphiphilic molecules in the region of inhomogeneity owing to the interaction of hydrophobic and polar parts of the molecules with the solvent. For the sake of simplicity, we discuss the case of identical second virial coefficients of the interaction of monomer units and amphiphilic molecules with different energies of interaction of the hydrophobic and polar parts of the molecule with the solvent. By comparing the free energy for different types of microstructures, we predict that, with deterioration in the quality of the solvent, there is an initial formation of a homogeneous globule followed by formation of a body-centered cubic structure; a hexagonal cylindrical structure; and, finally, a lamellar structure. For a low degree of amphiphilicity, the transition from a homogeneous globule to only a lamellar structure occurs. An increase in the concentration of the amphiphilic substance in the surrounding solution hinders the formation of a globule but facilitates its microstructuring, which is also promoted by an increase in the volume of the amphiphilic molecule and the difference in the interaction energies of its hydrophobic and polar parts with the solvent. Phase diagrams of a globule’s state at different values of model parameters are plotted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. De Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  2. 2.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1991).Google Scholar
  3. 3.
    R. Lipowsky, Nature (London) 349, 475 (1991).CrossRefGoogle Scholar
  4. 4.
    E. Hecht and H. Hoffmann, Langmuir 10, 86 (1994).CrossRefGoogle Scholar
  5. 5.
    B. Nandan, C. Lee, H. Chen, and W. Chen, Macromolecules 38, 10117 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Xing and G. Zhao, e-Polymers, No. 018 (2007).Google Scholar
  7. 7.
    H. Hoffmann, C. Thunig, P. Schmiedel, and U. Munkert, Langmuir 10, 3972 (1994).CrossRefGoogle Scholar
  8. 8.
    J. Oberdisse, C. Couve, J. Appell, J. Berret, C. Ligoure, and G. Porte, Langmuir 12, 1212 (1996).CrossRefGoogle Scholar
  9. 9.
    I. W. Hamley, Introduction to Soft Matter: Polymers, Colloids, Amphiphiles, Liquid Crystals (Wiley, Chichester, 2000).Google Scholar
  10. 10.
    T. Nylander, Y. Samoshina, and B. Lindman, J. Colloid Interface Sci. 123, 105 (2006).CrossRefGoogle Scholar
  11. 11.
    E. Radlinska, T. Gulik-Krzywicki, F. Lafuma, D. Langevin, W. Urbach, C. Williams, and R. Ober, Phys. Rev. Lett. 74, 4237 (1995).CrossRefGoogle Scholar
  12. 12.
    I. Akiba, H. Masunaga, S. Murata, and K. Sasaki, e-Polymers, No. 036 (2006).Google Scholar
  13. 13.
    J. Ruokolainen, J. Tanner, G. Brinke, O. Ikkala, M. Torkkeli, and R. Serimaa, Macromolecules 28, 7779 (1995).CrossRefGoogle Scholar
  14. 14.
    J. Ruokolainen, J. Tanner, G. Brinke, O. Ikkala, M. Torkkeli, and R. Serimaa, Macromolecules 29, 3409 (1996).CrossRefGoogle Scholar
  15. 15.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, B. Komanschek, O. Ikkala, and G. Brinke, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 6646 (1996).CrossRefGoogle Scholar
  16. 16.
    M. V. Vol’kenshtein, Molecular Biophysics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  17. 17.
    L. Nio, K.-C. Chang, S. Wilson, P. Tran, F. Zuo, and D. Swinney, Biochemistry 46, 4775 (2007).CrossRefGoogle Scholar
  18. 18.
    G. H. Fredrickson, Macromolecules 26, 2825 (1993).CrossRefGoogle Scholar
  19. 19.
    P. N. Ablyazov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 51, 424 (2009) [Vysokomol. Soedin., Ser. A 51, 629 (2009)].CrossRefGoogle Scholar
  20. 20.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  21. 21.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).CrossRefGoogle Scholar
  22. 22.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, Polymer Science, Ser. A 50, 854 (2008) [Vysokomol. Soedin., Ser. A 50, 1470 (2008)].CrossRefGoogle Scholar
  23. 23.
    E. N. Govorun, A. S. Ushakova, and A. R. Khokhlov, Eur. Phys. J. E 32, 229 (2010).CrossRefGoogle Scholar
  24. 24.
    P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979;).Google Scholar
  25. 25.
    L. Leibler, Macromolecules 13, 1602 (1980).CrossRefGoogle Scholar
  26. 26.
    I. Ya. Erukhimovich, in Nanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives, Ed. by A. V. Zvelindovsky (Springer, Dordrecht, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. N. Govorun
    • 1
  • A. S. Ushakova
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations