Polymer Science Series A

, Volume 54, Issue 1, pp 1–10 | Cite as

Binding of mucin to water-soluble and surface-grafted boronate-containing polymers

  • A. E. Ivanov
  • N. M. Solodukhina
  • L. Nilsson
  • M. P. Nikitin
  • P. I. Nikitin
  • V. P. Zubov
  • A. A. Vikhrov
Structure and Properties


The binding of mucin to water-soluble copolymers of N,N-dimethylacrylamide and N-acryloyl-m-aminophenylboronic acid grafted on the surface of glass is studied. Atomic force microscopy studies show that many graft copolymer islands 20–200 nm in diameter and 50 nm in height occur on the modified surface of flat glass. Owing to the presence of phenyl boronate groups, the copolymer behaves as a weak polyelectrolyte (pKa = 9.0) and, in the grafted state in an aqueous solution, experiences reversible transitions between states with higher and lower degrees of ionization. As evidenced by spectral correlation interferometry, this phenomenon brings about a change in the thickness of the grafted layer by approximately 0.5 nm. The ability of phenyl boronate groups to form cyclic esters with diol and polyol groups results in complexation of the soluble copolymer with mucin oligosaccharides and entails the appearance of slowly growing submicron particles formed by similarly charged polymers. The specificity of complexation is confirmed by dissolution of particles in the presence of fructose: a saccharide with a strong affinity for phenyl boronate groups. The binding of mucin to glass, which is chemically modified with the above copolymer, leads to formation of an adsorption layer with a thickness of 1.2–1.8 nm. Thus, boronate-containing copolymers are suitable for preparing carriers with controllable adsorption properties with respect to polyols, including mucinlike proteins of cellular glycocalyxes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tadmor, J. Janik, and J. Klein, Phys. Rev. Lett. 91(11), 1 (2003).CrossRefGoogle Scholar
  2. 2.
    H. G. Snaith, G. Whiting, B. Sun, et al., Nano Lett. 5, 1653 (2005).CrossRefGoogle Scholar
  3. 3.
    A. E. Ivanov, V. V. Saburov, and V. P. Zubov, Adv. Polym. Sci. 104, 135 (1992).CrossRefGoogle Scholar
  4. 4.
    V. P. Zubov, D. V. Kapustin, A. N. Generalova, et al., Polymer Science, Ser. A 49, 1247 (2007) [Vysokomol. Soedin., Ser. A 49, 2042 (2007)].CrossRefGoogle Scholar
  5. 5.
    T. Kawai, K. Saito, and W. Lee, J. Chromatogr. B 790, 131 (2004).CrossRefGoogle Scholar
  6. 6.
    L. B. Piotrovskii, R. V. Romanov, R. A. Kotel’nikova, et al., Fundament. Probl. Farmakol. 2, 84 (2003).Google Scholar
  7. 7.
    H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater.(Weinheim, Fed. Repub. Ger.) 16, 338 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Muzutani, A. Kikuchi, M. Yamato, et al., Biomaterials 29, 2073 (2008).CrossRefGoogle Scholar
  9. 9.
    R. R. Bhat, B. N. Chaney, J. Rowley, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 2802 (2005).CrossRefGoogle Scholar
  10. 10.
    V. I. Sevast’yanov and V. N. Vasilets, Ross. Khim. Zh. 52(3), 72 (2008).Google Scholar
  11. 11.
    C. G. Oster, M. Wittmar, F. Unger, et al., Pharm. Res. 21, 927 (2004).CrossRefGoogle Scholar
  12. 12.
    D. L. Huber, R. P. Manginell, M. A. Samara, et al., Science (Washington, D. C.) 301, 352 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Kitano, Y. Anraku, and H. Shinohara, Biomacromolecules 7, 1065 (2006).CrossRefGoogle Scholar
  14. 14.
    V. Koutsos, E. W. Van der Vegte, E. Pelletier, et al., Macromolecules 30, 4719 (1997).CrossRefGoogle Scholar
  15. 15.
    T. M. Birshtein, B. M. Amoskov, A. A. Merkur’eva, et al., Polymer Science, Ser. A 47, 476 (2005) [Vysokomol. Soedin., Ser. A 47, 795 (2005)].Google Scholar
  16. 16.
    M. V. Kuzimenkova, A. E. Ivanov, and I. Yu. Galaev, Macromol. Biosci. 6, 170 (2006).CrossRefGoogle Scholar
  17. 17.
    A. E. Ivanov, H. A. Panahi, M. V. Kuzimenkova, L. Nilsson, B. Bergenstahl, H. S. Waqif, M. Jahanshahi, I. Yu. Galaev, and B. Mattiasson, Chem.-Eur. J. 12, 7204 (2006).CrossRefGoogle Scholar
  18. 18.
    J. C. Norrild and H. Eggert, J. Chem. Soc., Perkin Trans., No. 12, 2583 (1996).Google Scholar
  19. 19.
    A. E. Ivanov, J. Eccles, H. A. Panahi, et al., J. Biomed. Mater. Res. A 88, 213 (2009).Google Scholar
  20. 20.
    X. Zhong, H.-J. Bai, J.-J. Xu, et al., Adv. Funct. Mater. 20, 992 (2010).CrossRefGoogle Scholar
  21. 21.
    G. J. Strous and J. Dekker, Crit. Rev. Biochem. Mol. Biol. 27, 57 (1992).CrossRefGoogle Scholar
  22. 22.
    A. D. Turashev, E. G. Tishchenko, and A. V. Maksimenko, Kardiol. Vestn. 2, 84 (2007).Google Scholar
  23. 23.
    P. I. Nikitin, B. G. Gorshkov, M. V. Valeiko, and S. I. Rogov, Kvantovaya Elektron. (Moscow) 30, 1099 (2000).CrossRefGoogle Scholar
  24. 24.
    P. I. Nikitin, M. V. Valeiko, and B. G. Gorshkov, Sens. Actuators B 90, 46 (2003).CrossRefGoogle Scholar
  25. 25.
    P. I. Nikitin, M. V. Valeiko, B. G. Gorshkov, and T. I. Ksenevich, Sens. Actuators B 111–112, 500 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Hartmann, P. Nikitin, and M. Keusgen, Biosens. Bioelectron. 22, 28 (2006).CrossRefGoogle Scholar
  27. 27.
    P. I. Nikitin, P. M. Vetoshko, and T. I. Ksenevich, Sens. Lett. 5, 296 (2007).CrossRefGoogle Scholar
  28. 28.
    P. Nikitin, P. Vetoshko, and T. Ksenevich, J. Magn. Magn. Mater. 311, 445 (2007).CrossRefGoogle Scholar
  29. 29.
    T. L. Krasnikova, P. I. Nikitin, T. I. Ksenevich, et al., Dokl. Akad. Nauk 433, 559 (2010).Google Scholar
  30. 30.
    T. L. Krasnikova, P. I. Nikitin, T. I. Ksenevich, et al., Biol. Membr. 28, 68 (2011).Google Scholar
  31. 31.
    A. E. Ivanov, H. Larsson, I. Yu. Galaev, and B. Mattiasson, Polymer 45, 2495 (2004).CrossRefGoogle Scholar
  32. 32.
    Siqi Li, E. N. Davis, J. Anderson, Qiao Lin, and Qian Wang, Biomacromolecules 10, 113 (2009).CrossRefGoogle Scholar
  33. 33.
    Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley, New York, 1989), p. VII–8.Google Scholar
  34. 34.
    P. Liu, W. M. Liu, and Q. J. Xue, Eur. Polym. J. 40, 267 (2004).CrossRefGoogle Scholar
  35. 35.
    J. F. Verchere and M. Hlaibi, Polyhedron 6, 1415 (1987).CrossRefGoogle Scholar
  36. 36.
    A. Matsumoto, S. Ikeda, A. Harada, and K. Kataoka, Biomacromolecules 4, 1410 (2003).CrossRefGoogle Scholar
  37. 37.
    H. Kanazawa, Y. Matsushima, and T. Okano, Trends Anal. Chem. 17, 435 (1998).CrossRefGoogle Scholar
  38. 38.
    A. E. Ivanov, L. S. Zhigis, E. V. Kurganova, and V. P. Zubov, J. Chromatogr., A 776, 75 (1997).CrossRefGoogle Scholar
  39. 39.
    C. L. Laboisse, Biochimie 68, 611 (1986).CrossRefGoogle Scholar
  40. 40.
    M. Mantle and A. Allen, Biochem. J. 195, 267 (1981).Google Scholar
  41. 41.
    G. T. Morin, M.-F. Paugam, M. P. Hughes, and B. D. Smith, Org. Chem. 59, 2724 (1994).CrossRefGoogle Scholar
  42. 42.
    K. Djanashvili, L. Frullano, and J. A. Peters, Chem.-Eur. J. 11, 4010 (2005).CrossRefGoogle Scholar
  43. 43.
    D. J. Thornton, M. Howart, P. L. Devine, and J. K. Sheehan, Anal. Biochem. 227, 162 (1995).CrossRefGoogle Scholar
  44. 44.
    S. Lee, M. Muller, K. Rezvan, and N. D. Spencer, Langmuir 21, 8344 (2005).CrossRefGoogle Scholar
  45. 45.
    J. McColl, G. E. Yakubov, and J. J. Ramsden, Langmuir 23, 7096 (2007).CrossRefGoogle Scholar
  46. 46.
    T. Sandberg, H. Blom, and K. D. Caldwell, J. Biomed. Mater. Res. A 91, 762 (2009).Google Scholar
  47. 47.
    M. Dowlut and D. Hall, J. Am. Chem. Soc. 128, 4226 (2006).CrossRefGoogle Scholar
  48. 48.
    V. S. Zaitsev, V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Dokl. Akad. Nauk 323, 890 (1992).Google Scholar
  49. 49.
    V. A. Izumrudov, Usp. Khim. 77, 401 (2008).Google Scholar
  50. 50.
    P. V. Plotnikova, O. L. Vlasova, A. R. Groshnikova, et al., Zh. Prikl. Khim. (S.-Peterburg) 81, 1533 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. E. Ivanov
    • 1
  • N. M. Solodukhina
    • 2
  • L. Nilsson
    • 3
  • M. P. Nikitin
    • 2
    • 4
  • P. I. Nikitin
    • 5
  • V. P. Zubov
    • 2
  • A. A. Vikhrov
    • 2
  1. 1.Protista Biotechnology AB, IdeonLundSweden
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Department of Food TechnologyLund UniversityLundSweden
  4. 4.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  5. 5.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations