Polymer Science Series A

, 53:846 | Cite as

Computer simulation of macromolecular systems with amphiphilic monomer units: Biomimetic models

Reviews

Abstract

The review presents the basic models used to analyze the self-assembly of protein macromolecules and the main results of studying the self-organization of macromolecules in terms of the concepts of amphiphilicity of an individual monomer unit. The features of the coil-globule transition of these macro-molecules in solutions with different concentrations are described in terms of the statistics of the distribution of monomer units and chain rigidity. It is shown that this model is efficient for interpreting and analyzing experimental data for the study of synthetic and biological macromolecules.

References

  1. 1.
    M. V. Vol’kenshtein, Biophysics (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Protein (Knizhnyi Dom “Universitet,” Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (Worth, New York, 2000).Google Scholar
  4. 4.
    C. B. Anfinsen, Science (Washington, D. C.) 181, 223 (1973).CrossRefGoogle Scholar
  5. 5.
    A. R. Fersht and E. I. Shakhnovich, Curr. Opin. Struct. Biol. 8, 478 (1998).Google Scholar
  6. 6.
    M. Levitt, M. Gerstein, E. Huang, et al., Annu. Rev. Biochem. 66, 549 (1997).CrossRefGoogle Scholar
  7. 7.
    J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Annu. Rev. Phys. Chem. 48, 545 (1997).CrossRefGoogle Scholar
  8. 8.
    V. S. Pande, A. Y. Grosberg, and T. Tanaka, Rev. Mod. Phys. 72, 259 (2000).CrossRefGoogle Scholar
  9. 9.
    K. W. Plaxco, D. S. Riddle, V. Grantcharova, and D. Baker, Curr. Opin. Struct. Biol. 8, 80 (1998).CrossRefGoogle Scholar
  10. 10.
    E. I. Shakhnovich, Curr. Opin. Struct. Biol. 7(1P), 29 (1997).CrossRefGoogle Scholar
  11. 11.
    V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich, Biochemistry 33, 10026 (1994).CrossRefGoogle Scholar
  12. 12.
    J. D. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. Sci. U. S. A. 84, 7524 (1987).CrossRefGoogle Scholar
  13. 13.
    J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).CrossRefGoogle Scholar
  14. 14.
    K. A. Dill, Biochemistry 29, 7133 (1990).CrossRefGoogle Scholar
  15. 15.
    N. Go and H. Abe, Biopolymers 20, 991 (1981).CrossRefGoogle Scholar
  16. 16.
    A. Irback and F. Potthast, J. Chem. Phys. 103, 10298 (1995).CrossRefGoogle Scholar
  17. 17.
    D. K. Klimov and D. Thirumalai, Fold. Des. 3, 127 (1998).CrossRefGoogle Scholar
  18. 18.
    C. Micheletti, F. Seno, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 80, 2237 (1998).CrossRefGoogle Scholar
  19. 19.
    E. I. Shakhnovich, Fold. Des. 1, 50 (1996).CrossRefGoogle Scholar
  20. 20.
    Y. Zhou and M. Karplus, Nature (London) 401, 400 (1999).Google Scholar
  21. 21.
    C. L. Brooks, M. Gruebele, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci. U. S. A. 95, 11037 (1998).CrossRefGoogle Scholar
  22. 22.
    C. D. Snow, H. Nguyen, V. S. Pande, and M. Gruebele, Nature (London) 420, 102 (2002).CrossRefGoogle Scholar
  23. 23.
    Ruhong Zhou, Proc. Natl. Acad. Sci. U. S. A. 100, 13280 (2003).CrossRefGoogle Scholar
  24. 24.
    S. Chowdhury, M. C. Lee, G. M. Xiong, and Y. Duan, J. Mol. Biol. 327, 711 (2003).CrossRefGoogle Scholar
  25. 25.
    J. W. Pitera and W. Swope, Proc. Natl. Acad. Sci. U. S. A. 100, 7587 (2003).CrossRefGoogle Scholar
  26. 26.
    B. Zagrovic and V. Pande, J. Comput. Chem. 24, 1432 (2003).CrossRefGoogle Scholar
  27. 27.
    P. L. Freddolino, F. Liu, S. Park, et al., Biophys. J. 96, 590 (2009).CrossRefGoogle Scholar
  28. 28.
    V. A. Voelz, G. R. Bowman, K. Beauchamp, and V. S. Pande, J. Am. Chem. Soc. 132, 1526 (2010).CrossRefGoogle Scholar
  29. 29.
    P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten, Biophys. J. 94, 75 (2008).CrossRefGoogle Scholar
  30. 30.
    P. L. Freddolino and K. Schulten, Biophys. J. 97, 2338 (2009).CrossRefGoogle Scholar
  31. 31.
    L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc. 124, 12952 (2002).CrossRefGoogle Scholar
  32. 32.
    R. C. Rizzo and W. L. Jorgensen, J. Am. Chem. Soc. 121, 4827 (1999).CrossRefGoogle Scholar
  33. 33.
    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).CrossRefGoogle Scholar
  34. 34.
    H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans, in Intermolecular Forces, Ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331.Google Scholar
  35. 35.
    R. Zhou, E. Harder, H. Xu, and B. J. Berne, J. Chem. Phys. 115, 2348 (2001).CrossRefGoogle Scholar
  36. 36.
    K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).CrossRefGoogle Scholar
  37. 37.
    H. Lei and Y. Duan, J. Phys. Chem. B 111, 5458 (2007).CrossRefGoogle Scholar
  38. 38.
    H. Lei and Y. Duan, J. Mol. Biol. 370, 196 (2007).CrossRefGoogle Scholar
  39. 39.
    D. L. Ensign, P. M. Kasson, and V. S. Pande, J. Mol. Biol. 374, 806 (2007).CrossRefGoogle Scholar
  40. 40.
    J. L. Klepeis, K. Lindorff-Larsen, Ron O Drorl, and D. E. Shaw, Curr. Opin. Struct. Biol. 19, 120 (2009).CrossRefGoogle Scholar
  41. 41.
    G. A. Papoian, J. Ulander, M. P. Eastwood, et al., Proc. Natl. Acad. Sci. U. S. A. 10, 3352 (2004).CrossRefGoogle Scholar
  42. 42.
    G. A. Papoian, J. Ulander, and P. G. Wolynes, J. Am. Chem. Soc. 125, 9170 (2003).CrossRefGoogle Scholar
  43. 43.
    G. A. Papoian and P. G. Wolynes, Biopolymers 68, 333 (2003).CrossRefGoogle Scholar
  44. 44.
    R. Dubin, S. Eddy, A. Krogh, and G. Mitchinson, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
  45. 45.
    A. N. Gorban’, T. G. Popova, and M. G. Sadovskii, Zh. Obshch. Biol. 64, 51 (2003).Google Scholar
  46. 46.
    Z.-G. Yu, V. Anh, and K.-S. Lau, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 68, 021913 (2003).CrossRefGoogle Scholar
  47. 47.
    V. V. Vasilevskaya, L. V. Gusev, and A. R. Khokhlov, Dokl. Akad. Nauk 397, 542 (2004).Google Scholar
  48. 48.
    V. V. Vasilevskaya, L. V. Gusev, and A. R. Khokhlov, Macromol. Theory Simul. 15, 425 (2006).CrossRefGoogle Scholar
  49. 49.
    A. Sh. Ziyatdinov, L. V. Gusev, V. V. Vasilevskaya, and A. R. Khokhlov, Dokl. Akad. Nauk 411, 829 (2006).Google Scholar
  50. 50.
    B. S. Weir, Genetic Data Analysis: Methods for Discrete Population Genetic Data (Sinauer Associates, Massachusetts, 1990; Mir, Moscow, 1995).Google Scholar
  51. 51.
    K. A. Dill, Biochemistry 24, 1501 (1985).CrossRefGoogle Scholar
  52. 52.
    K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989).CrossRefGoogle Scholar
  53. 53.
    B. Lindman and P. Alexandridis, Amphiphilic Block Copolymers (Elsevier, Amsterdam, 2000).Google Scholar
  54. 54.
    B. Reining, H. Keul, and H. Höcke, Polymer 43, 7145 (2002).CrossRefGoogle Scholar
  55. 55.
    D. F. Parsons and D. R. M. Williams, Phys. Rev. Lett. 99, 228302 (2007).CrossRefGoogle Scholar
  56. 56.
    M. Bachmanna and W. Janke, J. Chem. Phys. 120, 6779 (2004).CrossRefGoogle Scholar
  57. 57.
    J. N. Onuchic, P. G. Wolynes, Z. Luthey-Schulten, and N. D. Socci, Proc. Natl. Acad. Sci. U. S. A. 92, 3626 (1995).CrossRefGoogle Scholar
  58. 58.
    A. R. Khokhlov and P. G. Khalatur, Physica A (Amsterdam) 249, 253 (1998).CrossRefGoogle Scholar
  59. 59.
    A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).CrossRefGoogle Scholar
  60. 60.
    P. G. Khalatur and A. R. Khokhlov, Adv. Polym. Sci. 195, 1 (2006).CrossRefGoogle Scholar
  61. 61.
    E. N. Govorun, V. A. Ivanov, A. R. Khokhlov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 040903 (2001).CrossRefGoogle Scholar
  62. 62.
    C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, et al., Nature (London) 356, 168 (1992).CrossRefGoogle Scholar
  63. 63.
    C.-K. Peng, S. V. Buldyrev, S. Havlin, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 49, 1685 (1994).CrossRefGoogle Scholar
  64. 64.
    L. V. Gusev, V. V. Vasilevskaya, V. Ju. Makeev, et al., Macromol. Theory Simul. 12, 604 (2003).CrossRefGoogle Scholar
  65. 65.
    E. N. Govorun, A. R. Khokhlov, and A. N. Semenov, Eur. Phys. J. E 12, 255 (2003).CrossRefGoogle Scholar
  66. 66.
    A. N. Semenov, Macromolecules 37, 266 (2004).CrossRefGoogle Scholar
  67. 67.
    A. R. Khokhlov, A. N. Semenov, and A. V. Subbotin, Eur. Phys. J. E 17, 283 (2005).CrossRefGoogle Scholar
  68. 68.
    J. J. Semler and J. Genzer, J. Chem. Phys. 125, 014902 (2006).CrossRefGoogle Scholar
  69. 69.
    L. Strickland, K. Hall, and J. Genzer, Macromolecules 42, 9063 (2009).CrossRefGoogle Scholar
  70. 70.
    N. Yoshinaga, D. J. Bicout, E. I. Kats, and A. Halperin, Macromolecules 40, 2201 (2007).CrossRefGoogle Scholar
  71. 71.
    J. Virtanen, C. Baron, and H. Tenhu, Macromolecules 33, 336 (2000).CrossRefGoogle Scholar
  72. 72.
    J. Virtanen and H. Tenhu, Macromolecules 33, 5970 (2000).CrossRefGoogle Scholar
  73. 73.
    V. O. Aseyev, H. Tenhu, and F. M. Winnik, Adv. Polym. Sci. 196, 1 (2006).CrossRefGoogle Scholar
  74. 74.
    J. J. Semler, Y. K. Jhon, A. Tonelli, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 2877 (2007).CrossRefGoogle Scholar
  75. 75.
    V. I. Lozinsky, Adv. Polym. Sci. 196, 87 (2006).CrossRefGoogle Scholar
  76. 76.
    V. I. Lozinskii, I. A. Simenel, E. A. Kurskaya, V. K. Kulakova, V. Ya. Grinberg, A. S. Dubovik, I. Yu. Galaev, V. Mattiasson, and A. R. Khokhlov, Dokl. Akad. Nauk 375, 637 (2000).Google Scholar
  77. 77.
    V. I. Lozinsky, I. A. Simenel, V. K. Kulakova, E. A. Kurskaya, T. A. Babushkina, T. P. Klimova, T. V. Burova, A. S. Dubovik, V. Ya. Grinberg, I. Yu. Galaev, V. Mattiasson, and A. R. Khokhlov, Macromolecules 36, 7308 (2003).CrossRefGoogle Scholar
  78. 78.
    G. Zhang and C. Wu, Adv. Polym. Sci. 195, 101 (2006).CrossRefGoogle Scholar
  79. 79.
    A. V. Berezkin, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 118, 8049 (2003).CrossRefGoogle Scholar
  80. 80.
    A. V. Berezkin, P. G. Khalatur, A. R. Khokhlov, and P. Reineker, New J. Phys. 6, 44 (2004).CrossRefGoogle Scholar
  81. 81.
    P. G. Khalatur, V. V. Novikov, and A. R. Khokhlov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 67, 051901 (2003).CrossRefGoogle Scholar
  82. 82.
    A. V. Chertovich, E. N. Govorun, V. A. Ivanov, et al., Eur. Phys. J. E 13, 15 (2004).CrossRefGoogle Scholar
  83. 83.
    J. Lin, IEEE Trans. Inform. Theor. 37, 145 (1991).CrossRefGoogle Scholar
  84. 84.
    P. Bernaola-Galva’n, R. Roma’n-Rolda’n, and J. L. Oliver, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 53, 5181 (1996).CrossRefGoogle Scholar
  85. 85.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  86. 86.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  87. 87.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Adv. Polym. Sci. 195, 177 (2006).CrossRefGoogle Scholar
  88. 88.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  89. 89.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  90. 90.
    A. A. Starostina, A. A. Klochkov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 50, 1008 (2008) [Vysokomol. Soedin., Ser. A 50, 1691 (2008)].CrossRefGoogle Scholar
  91. 91.
    E. Yu. Kramarenko, O. S. Pevnaya, and A. R. Khokhlov, J. Chem. Phys. 122, 084902 (2005).CrossRefGoogle Scholar
  92. 92.
    P. Kosovan, J. Kuldova, Z. Limpouchova, et al., Macromolecules 42, 6748 (2009).CrossRefGoogle Scholar
  93. 93.
    O. V. Borisov and E. B. Zhulina, Macromolecules 38, 2506 (2005).CrossRefGoogle Scholar
  94. 94.
    S. Basu, D. R. Vutukuri, S. Shyamroy, et al., J. Am. Chem. Soc. 126, 9890 (2004).CrossRefGoogle Scholar
  95. 95.
    E. N. Savariar, S. V. Aathimanikandan, and S. Thayumanava, J. Am. Chem. Soc. 128, 16224 (2006).CrossRefGoogle Scholar
  96. 96.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).CrossRefGoogle Scholar
  97. 97.
    E. A. Maresov and A. N. Semenov, Macromolecules 41, 9439 (2008).CrossRefGoogle Scholar
  98. 98.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).CrossRefGoogle Scholar
  99. 99.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Macromol. Symp. 252, 24 (2007).CrossRefGoogle Scholar
  100. 100.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Polymer Science, Ser. A 50, 621 (2008) [Vysokomol. Soedin., Ser. A 50, 965 (2008)].CrossRefGoogle Scholar
  101. 101.
    V. V. Vasilevskaya and V. A. Markov, G. Ten Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).CrossRefGoogle Scholar
  102. 102.
    M. Bockstaller, W. Kohler, G. Wegner, et al., Macro-molecules 34, 6359 (2001).CrossRefGoogle Scholar
  103. 103.
    G. Wegner, Macromol. Chem. Phys. 204, 347 (2003).CrossRefGoogle Scholar
  104. 104.
    J. H. David and J. S. Moore, Proc. Natl. Acad. Sci. U. S. A. 99, 5053 (2002).CrossRefGoogle Scholar
  105. 105.
    L. Arnt and G. N. Tew, Macromolecules 37, 1283 (2004).CrossRefGoogle Scholar
  106. 106.
    H. J. Limbach, C. Holm, and K. Kremer, Macromol. Chem. Phys. 206, 77 (2005).CrossRefGoogle Scholar
  107. 107.
    B. Hess, M. Sayar, and C. Holm, Macromolecules 40, 1703 (2007).CrossRefGoogle Scholar
  108. 108.
    M. Sayar and C. Holm, EPL 77, 16001 (2007).CrossRefGoogle Scholar
  109. 109.
    C. Cai, J. Lin, T. Chen, and X. Tian, Langmuir 26, 2791 (2010).CrossRefGoogle Scholar
  110. 110.
    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 52, 761 (2010) [Vysokomol. Soedin., Ser. A 52, 1152 (2010)].CrossRefGoogle Scholar
  111. 111.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].CrossRefGoogle Scholar
  112. 112.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 52, 317 (2010) [Vysokomol. Soedin., Ser. A 52, 466 (2010)].CrossRefGoogle Scholar
  113. 113.
    K. Hizume, T. Nakai, S. Araki, et al., Ultramicroscopy 109, 868 (2009).CrossRefGoogle Scholar
  114. 114.
    A. R. Khokhlov and P. G. Khalatur, Chem. Phys. Lett. 461, 58 (2008).CrossRefGoogle Scholar
  115. 115.
    A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 52, 182 (2010) [Vysokomol. Soedin., Ser. A 52, 78 (2010)].CrossRefGoogle Scholar
  116. 116.
    Y. A. Kriksin, P. G. Khalatur, I. Y. Erukhimovich, et al., Soft Matter 5, 2896 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations