Advertisement

Polymer Science Series A

, 53:733 | Cite as

Formation of fibrillar aggregates in concentrated solutions of rigid-chain amphiphilic macromolecules with fixed torsion and bend angles

  • M. K. Glagolev
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Theory and Simulation

Abstract

The molecular-dynamics method is used to study solutions of amphiphilic macromolecules with a local helical structure. A deterioration in the solvent quality in concentrated solutions of these macromolecules leads to the formation of intermolecular fibrillar helix bundles with approximately the same lengths and aggregation numbers. The number of chains in a bundle is determined by parameters that characterize the local structure and is weakly dependent on the length of the macromolecule and the volume fraction of the polymer in the solution. In racemic mixtures of these macromolecules, a deterioration in the solvent quality leads to effective demixing; that is, the resultant fibrillar bundles generally contain macromolecules of exclusively the same chirality.

Keywords

Polymer Science Series Aggregation Number Bend Angle Rigid Chain Solvent Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Goldar and J.-L. Sikorav, Eur. Phys. J. E 14, 211 (2004).CrossRefGoogle Scholar
  2. 2.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  3. 3.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  4. 4.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 22, 10103 (2003).CrossRefGoogle Scholar
  5. 5.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  6. 6.
    A. A. Starostina, A. A. Klochkov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 50, 1008 (2008) [Vysokomol. Soedin., Ser. A 50, 1691 (2008)].CrossRefGoogle Scholar
  7. 7.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].CrossRefGoogle Scholar
  8. 8.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 52, 317 (2010) [Vysokomol. Soedin., Ser. A 52, 466 (2010)].CrossRefGoogle Scholar
  9. 9.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).CrossRefGoogle Scholar
  10. 10.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Macromol. Symp. 252, 24 (2007).CrossRefGoogle Scholar
  11. 11.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Polymer Science, Ser. A 50, 422 (2008) [Vysokomol. Soedin., Ser. A 50, 965 (2008)].CrossRefGoogle Scholar
  12. 12.
    V. V. Vasilevskaya, V. A. Markov, G. Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).CrossRefGoogle Scholar
  13. 13.
    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 52, 761 (2010) [Vysokomol. Soedin., Ser. A 52, 1152 (2010)].CrossRefGoogle Scholar
  14. 14.
    M. V. Vol’kenshtein, Molecular Biophysics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  15. 15.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP, Ithaca, 1994).Google Scholar
  16. 16.
    S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  17. 17.
    O. E. Philippova, E. V. Volkov, N. L. Sitnikova, and A. R. Khokhlov, Biomacromolecules 2, 483 (2001).CrossRefGoogle Scholar
  18. 18.
    L. Schulz, W. Burchard, and R. Donges, ACS Symp. Ser., Vol. 688 (1998), Chap. 16, p. 218.CrossRefGoogle Scholar
  19. 19.
    R. Rulkens, G. Wegner, and T. Thurn-Albrecht, Langmuir 15, 4022 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Bockstaller, W. Kohler, G. Wegner, and G. Fytas, Macromolecules 34, 6353 (2001).CrossRefGoogle Scholar
  21. 21.
    O. E. Phlippova, R. Rulkens, B. I. Kovtunenko, et al., Macromolecules 31, 1168 (1998).CrossRefGoogle Scholar
  22. 22.
    A. Kroeger, J. Belack, A. Larsen, et al., Macromolecules 39, 7098 (2006).CrossRefGoogle Scholar
  23. 23.
    A. Kroeger, V. Deimede, J. Belack, et al., Macromolecules 40, 105 (2007).CrossRefGoogle Scholar
  24. 24.
    A. F. Thunemann, D. Ruppelt, H. Schnablegger, and J. Blaul, Macromolecules 33, 2124 (2000).CrossRefGoogle Scholar
  25. 25.
    H. J. Limbach, M. Sayar, and C. Holm, J. Phys.: Condens. Matter 16, 2135 (2004).CrossRefGoogle Scholar
  26. 26.
    H. J. Limbach, C. Holm, and K. Kremer, Macromol. Chem. Phys. 206, 77 (2005).CrossRefGoogle Scholar
  27. 27.
    B. Hess, M. Sayar, and C. Holm, Macromolecules 40, 1703 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Sayar and C. Holm, EPL 77, 16001 (2007).CrossRefGoogle Scholar
  29. 29.
    C. Cai, J. Lin, T. Chen, and X. Tian, Langmuir 26, 2791 (2010).CrossRefGoogle Scholar
  30. 30.
    K. H. Kim, J. Huh, and W. H. Jo, Macromolecules 37, 676 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. K. Glagolev
    • 1
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations