Polymer Science Series A

, 53:655 | Cite as

Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds

  • I. A. Budagovsky
  • A. S. Zolot’ko
  • V. N. Ochkin
  • M. P. Smayev
  • S. A. Shvetsov
  • A. Yu. Bobrovsky
  • N. I. Boiko
  • V. P. Shibaev
  • M. I. Barnik
Article

Abstract

Processes of light-induced reorientation of nematic liquid-crystalline molecules induced by the addition of low concentrations (0.1–2.0 wt %) of comb-shaped polymers and carbosilane dendrimers containing azobenzene fragments are studied. When the molecular structure of the above compounds becomes more complicated, the induced orientational nonlinearity increases. The introduction of 2G and 3G dendrimers into a nematic has for the first time made it possible to visualize and study a purely optical first-order Freedericksz transition in the field of a linearly polarized wave.

References

  1. 1.
    P. G. De Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).Google Scholar
  2. 2.
    L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Nauka, Moscow, 1978; Wiley, New York, 1983).Google Scholar
  3. 3.
    I. C. Khoo and S. L. Zhuang, Appl. Phys. Lett. 37, 3 (1980).CrossRefGoogle Scholar
  4. 4.
    B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, Pis’ma Zh. Eksp. Teor. Fiz. 31, 287 (1980).Google Scholar
  5. 5.
    A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, et al., Pis’ma Zh. Eksp. Teor. Fiz. 32, 170 (1980).Google Scholar
  6. 6.
    S. M. Arakelyan and Yu. S. Chilingaryan, Nonlinear Optics of Liquid Crystals (Nauka, Moscow, 1984) [in Russian].Google Scholar
  7. 7.
    I. Janossy, L. Csillag, and A. D. Lloyd, Phys. Rev. A 44, 8410 (1991).CrossRefGoogle Scholar
  8. 8.
    I. Janossy and T. Kosa, Opt. Lett. 17, 1183 (1991).CrossRefGoogle Scholar
  9. 9.
    I. Janossy, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 49, 2957 (1994).Google Scholar
  10. 10.
    L. Marrucci and D. Paparo, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 1765 (1997).Google Scholar
  11. 11.
    A. S. Zolot’ko, Pis’ma Zh. Eksp. Teor. Fiz. 68, 410 (1998).Google Scholar
  12. 12.
    P. Palffy-Muhoray and E. Weinan, Mol. Cryst. Liq. Cryst. 320, 193 (1998).CrossRefGoogle Scholar
  13. 13.
    M. Warner and S. V. Fridrikh, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 4431 (2000).Google Scholar
  14. 14.
    I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, et al., Zh. Eksp. Teor. Fiz. 133, 204 (2008).Google Scholar
  15. 15.
    M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantsev, and D. B. Terskov, Kristallografiya 40, 746 (1995).Google Scholar
  16. 16.
    I. Janossy and L. Szabados, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 4598 (1998).Google Scholar
  17. 17.
    A. S. Zolot’ko, A. S. Averyushkin, V. F. Kitaeva, et al., Mol. Cryst. Liq. Cryst. 451, 41 (2006).CrossRefGoogle Scholar
  18. 18.
    I. A. Budagovsky, A. S. Zolot’ko, N. I. Lyukhanov, et al., Zhidk. Krist. Ikh Prakt. Ispol’zov., No. 4, 22 (2006).Google Scholar
  19. 19.
    A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, et al., Mol. Cryst. Liq. Cryst. 488, 265 (2008).CrossRefGoogle Scholar
  20. 20.
    I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, et al., Liq. Cryst. 36, 101 (2009).CrossRefGoogle Scholar
  21. 21.
    I. A. Budagovsky, V. N. Ochkin, S. A. Shvetsov, et al., Mol. Cryst. Liq. Cryst. 544, 112 (2011).CrossRefGoogle Scholar
  22. 22.
    E. A. Babayan, I. A. Budagovsky, A. S. Zolot’ko, et al., Kr. Soobshch. Fiz. FIAN, No. 8, 46 (2010).Google Scholar
  23. 23.
    E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 82, 061705 (2010).Google Scholar
  24. 24.
    A. Yu. Bobrovsky, A. Pakhomov, X. Zhu, et al., J. Phys. Chem. B 106, 540 (2002).CrossRefGoogle Scholar
  25. 25.
    A. I. Lysachkov, N. I. Boiko, E. A. Rebrov, et al., Izv. Akad. Nauk, Ser. Khim., No. 12, 2325 (2007).Google Scholar
  26. 26.
    A. S. Zolot’ko, V. F. Kitaeva, N. N. Sobolev, and A. P. Sukhorukov, Zh. Eksp. Teor. Fiz. 81, 933 (1981).Google Scholar
  27. 27.
    V. F. Kitaeva, A. S. Zolot’ko, and M. I. Barnik, Mol. Mater. 12, 271 (2000).Google Scholar
  28. 28.
    T. Kosa, P. Palffy-Muhoray, H. Zhang, and T. Ikeda, Mol. Cryst. Liq. Cryst. 421, 107 (2004).CrossRefGoogle Scholar
  29. 29.
    B. J. Frisken and P. Palffy-Muhoray, Phys. Rev. A 40, 6099 (1989).CrossRefGoogle Scholar
  30. 30.
    H. L. Ong, Phys. Rev. A 28, 2393 (1983).CrossRefGoogle Scholar
  31. 31.
    B. Ya. Zel’dovich and N. V. Tabiryan, Usp. Fiz. Nauk 147, 633 (1985).CrossRefGoogle Scholar
  32. 32.
    A. J. Karn, S. M. Arakelian, Y. R. Shen, and H. L. Ong, Phys. Rev. Lett. 57, 448 (1986).CrossRefGoogle Scholar
  33. 33.
    S.-H. Chen and J. J. Wu, Appl. Phys. Lett. 52, 1998 (1988).CrossRefGoogle Scholar
  34. 34.
    J. J. Wu and S.-H. Chen, J. Appl. Phys. 66, 1065 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. A. Budagovsky
    • 1
  • A. S. Zolot’ko
    • 1
  • V. N. Ochkin
    • 1
  • M. P. Smayev
    • 1
  • S. A. Shvetsov
    • 1
  • A. Yu. Bobrovsky
    • 2
  • N. I. Boiko
    • 2
  • V. P. Shibaev
    • 2
  • M. I. Barnik
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations