Polymer Science Series A

, Volume 53, Issue 7, pp 583–612

Chitooligosaccharides: Synthesis, characterization and applications

Natural Polymers

Abstract

Chitosans with high degree of polymerization and molecular weight exhibit poor aqueous solubility which is an impediment in their applicability. The low molecular weight chitosans (LMWCs) and chitooligosaccharides (COSs) can be used to avoid this hurdle. The development of an efficient process for reducing the molecular weight of chitosan, without altering its chemical structure, is of great interest to produce tailormade chitosans of varying Degree of Acetylation (DAs) and Degree of Polymerization (DPs). The production of well-defined COS-mixtures, or even pure COS, is of great interest since these oligosaccharides are thought to have several interesting bioactivities and applications. For this proper delineation of their characteristics is needed. Hence it is our attempt to provide an overview of difffernt methods and techniques of their production and characterization. Several methods viz. depolymerization under the action of reagents, enzymes, high energy impact and combinations thereof have been employed to get COS by depolymerization of high molecular weight chitosans. Acid hydrolysis (hydrochloric, nitrous, phosphoric acid, hydrogen fluoride) and oxidative reductive depolymerization (mediated by peroxide, ozone, and persulfate) are important routes for synthesis of COSs. These oligomers can be produced from chitin or chitosan as a starting material by enzymatic conversions. For this, numbers of enzymes have been used. Depolymerization under high energy impact and recombinant approaches are also being tried for production of COSs. LMWC and COS, like parent chitosan, can be used for drug delivery and gene delivery. The efficient and productive processes are needed for separation of COSs into its components or mixture of defined characters. The characterization of COS can be carried out by chromatographic and spectroscopic techniques. Importantly COSs display an array of biological activities as antimicrobial, anticancer/antimetastatic, wound healing acceleration, immunostimulation, apoptosis induction or inhibiton, antioxidant, enzyme inhibiton, antihyperlipidemic, antidiabetic, chemoprevention, and many more. A few of the biological actions are reported only sporadically where as some are persistently taken up by the scientific fraternity to substantiate the claims and propose possible mechanisms of action. However there remains the disagreement of results on COS activities. The disagreements can arise due to poor and variable reporting of the properties of COS such as used in the studies as molecular weight, degree of acetylation, molecular weight distribution, and the pattern of N-acetylation etc. With production of COS of well defined characters it might be possible to understand the modes of actions of COS in better ways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Muzzarelli, Carbohydr. Polym. 20, 7 (1993).Google Scholar
  2. 2.
    A. Ilina and V. Varlamov, Appl. Biochem. Microbiol. 3, 300 (2004).Google Scholar
  3. 3.
    S. Kataoka, Kobunshi Ronbunshu 37, 1 (1980).Google Scholar
  4. 4.
    R. Yamaguckiy and N. Arai, Agric. Biol. Chem. 46, 2379 (1882).Google Scholar
  5. 5.
    T. Osawa, Carbohydr. Res. 43, 443 (1996).Google Scholar
  6. 6.
    M. Bergmann and E. Siberkweit, Ber. Dtsch. Chem. Ges. 64, 2436 (1931).Google Scholar
  7. 7.
    L. Zechmeister and G. Toth, Ber. Dtsch. Chem. Ges. 64, 2028 (1931).Google Scholar
  8. 8.
    F. Zilliken, G. A. Braun, C. S. Rose, and P. Gyorgy, J. Am. Chem. Soc. 77, 1296 (1955).Google Scholar
  9. 9.
    S. Horowitz, S. Roseman, and H. Blumenthal, J. Am. Chem. Soc. 79, 5046 (1957).Google Scholar
  10. 10.
    S. Barker, A. Foster, J. M. Webberand, and M. Stacey, J. Chem. Soc. 10, 2218 (1958).Google Scholar
  11. 11.
    J. Distler and S. Roseman, Carbohydr. Chem. 8, 305 (1962).Google Scholar
  12. 12.
    M. Falk, D. G. Smith, J. McLachla, and A. G. McInnes. Can. J. Chem. 44, 2269 (1966).Google Scholar
  13. 13.
    A. Einbu, H. Grasdale, and K. Varum, Carbohydr. Res. 342, 1055 (2007).Google Scholar
  14. 14.
    K. M. Varum, M. H. Ottoy, and O. Smidsrod, Carbohydr. Polym. 46, 89 (2001).Google Scholar
  15. 15.
    D. Piszkiewicz and T. J. Bruice, J. Am. Chem. Soc. 90, 5844 (1968).Google Scholar
  16. 16.
    R. C. G. Moggrigde and A. J. Neuberger, J. Am. Chem. Soc. 745, 265 (1938).Google Scholar
  17. 17.
    J. A. Rupley, Biochim. Biophys. Acta 83, 245 (1964).Google Scholar
  18. 18.
    A. Einbu and K. M. Varum, Biomacromolecules 8, 309 (2007).Google Scholar
  19. 19.
    H. Holme, H. Foros, M. Pettersen, and O. Dornish, Carbohydr. Polym. 46, 287 (2001).Google Scholar
  20. 20.
    V. Y. Novikov, Russ. J. Appl. Chem. 77, 484 (2004).Google Scholar
  21. 21.
    R. P. Rege and H. Lawrence, Carbohydr. Res. 321, 235 (1999).Google Scholar
  22. 22.
    S. Tokutake, F. Nanjo, and K. Sakai, JP Appl. No. 61-21102 (1986).Google Scholar
  23. 23.
    S. Tokutake, F. Nanjo, and K. Sakai, JP Appl. No. 61-21103 (1986).Google Scholar
  24. 24.
    Z. Zhang, C. Li, Q. Wang, and Z. Zhao, Carbohydr. Polym. 78, 685 (2009).Google Scholar
  25. 25.
    A. Osorio-Madrazo, L. David, S. Trombotto, et al., Biomacromolecules 11, 1376 (2010).Google Scholar
  26. 26.
    F. Niola, N. Basora, E. Chornet, and P. Francois, Carbohydr. Res. 238, 1 (1993).Google Scholar
  27. 27.
    Y. J. Jeon, P. J. Park, and S. K. Kim, Carbohydr. Polym. 44, 71 (2001).Google Scholar
  28. 28.
    X. Ronge, L. Song, and Y. Huahua, Carbohydr. Res. 340, 2150 (2005).Google Scholar
  29. 29.
    L. Pengcheng, X. Ronge, L. Song, and Y. Huahua, Pat. Appl. No.2007/0089978 A1, USA (2007).Google Scholar
  30. 30.
    M. Vincendon, Carbohydr. Polym. 32, 233 (1997).Google Scholar
  31. 31.
    K. Nagasawa, Y. Tohira, Y. Inoue, and N. Tanoura, Carbohydr. Res. 18, 95 (1997).Google Scholar
  32. 32.
    N. Kinzo and T. Noriko, Chem. Pharm. Bull. 20, 157 (1972).Google Scholar
  33. 33.
    S. Hirano, Y. Kondo, and K. Fujii, Carbohydr. Res. 144, 338 (1985).Google Scholar
  34. 34.
    Chitin and Chitosan, Ed. by G. Skjaok-Braek, T. Anthonsen, and P. Sandford (Elsevier Applied Science, London, 1989).Google Scholar
  35. 35.
    G. G. Allan, M. Peyron, Carbohydr. Res. 277, 257 (1995).Google Scholar
  36. 36.
    O. P. Peniston and E. L. Johnson, US Patent No. 3922260 (1975).Google Scholar
  37. 37.
    H. Sashiwa, H. Saimoto, Y. Shigemasa, et al., Carbohydr. Res. 242, 167 (1993).Google Scholar
  38. 38.
    K. M. Varum, H. K. Holme, and M. Izume, in Proceedings of the 1st International Conference of the European Chitin Society, Brest, France, 1996, p. 173.Google Scholar
  39. 39.
    D. Horton and K. Eecqtnd, Carbohydr. Res. 30, 367 (1973).Google Scholar
  40. 40.
    T. Kristoffer, M. Kjell, and E. Bjorn, Carbohydr. Res. 333, 1374 (2001).Google Scholar
  41. 41.
    M. Shirui, S. Xintao, U. Florian, et al., Int. J. Pharm. 281, 5 (2004).Google Scholar
  42. 42.
    Q. Li, E. T. Dunn, E. W. Grandmaison, and M. F. A. Goosen, J. Bioact. Compat. Polym. 7, 370 (1992).Google Scholar
  43. 43.
    M. Hasegawa, A. Isogai, and F. Onabe, Carbohydr. Polym. 20, 279 (1993).Google Scholar
  44. 44.
    Z. H. Jia and D. F. Shen, Carbohydr. Polym. 49, 393 (2002).Google Scholar
  45. 45.
    C. Bosso, J. Defaye, A. Domard, et al., Carbohydr. Res. 156, 57 (1986).Google Scholar
  46. 46.
    J. Defaye, A. Gadelle, and C. A. Pedersen, Carbohydr. Res. 261, 267 (1994).Google Scholar
  47. 47.
    R. J. Nordtveit, K. M. Varum, and O. Smidsrod, Carbohydr. Polym. 23, 253 (1994).Google Scholar
  48. 48.
    S. Tanioka, Y. Matsui, T. Irie, et al., Biosci. Biotechnol. Biochem. 60, 2001 (1996).Google Scholar
  49. 49.
    K. L. Chang, M. C. Tai, and F. H. Cheng, J. Agric. Food Chem. 49, 4845 (2001).Google Scholar
  50. 50.
    S. C. Fry, Biochem. J. 332, 507 (1998).Google Scholar
  51. 51.
    C. Hawkins and M. J. Davies, J. Free Radic. Biol. Med. 21, 275 (1996).Google Scholar
  52. 52.
    C. Q. Qin, Y. M. Du, and L. Xiao, Polym. Degrad. Stab. 76, 211 (2002).Google Scholar
  53. 53.
    F. Tian, Y. Liu, K. Hu, and B. Zhao, J. Mater. Sci. 38, 4709 (2003).Google Scholar
  54. 54.
    T. Feng, Y. L. Keao, and H. B. Zhao, Carbohydr. Polym. 57, 31 (2004).Google Scholar
  55. 55.
    S. M. Wang, Q. Z. Huang, and Q. S. Wang, Carbohydr. Res. 340, 1143 (2005).Google Scholar
  56. 56.
    J. Shao, Y. Yang, and Q. Zhong, Polym. Degrad. Stab. 82, 395 (2003).Google Scholar
  57. 57.
    W. Anna and S. Joanna, Pol. Chitin Soc., Monograph XII, 13 (2007).Google Scholar
  58. 58.
    W. S. Choi, K. J. Ahn, D. W. Lee, et al., Polym. Degrad. Stab. 78, 533 (2002).Google Scholar
  59. 59.
    B. Kang, Y. D. Dai, and H. Q. Zhang, Polym. Degrad. Stab. 92, 359 (2007).Google Scholar
  60. 60.
    N. N. Kabalnova, K. Y. Murinov, I. R. Mullagaliev, and N. N. Krasnogorskaya, J. Appl. Polym. Sci. 81, 875 (2001).Google Scholar
  61. 61.
    W. Yue, R. He, P. J. Yao, and Y. A. Wei, Carbohydr. Polym. 77, 639 (2009).Google Scholar
  62. 62.
    W. Yue, P. Yao, Y. Wei, and H. Mo, Polym. Degrad. Stab. 93, 1814 (2008).Google Scholar
  63. 63.
    Shih S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab. 75, 73 (2002).Google Scholar
  64. 64.
    K. Sakai, Kogyo Gijutsukai 111 (1987).Google Scholar
  65. 65.
    M. Y. Lee, F. V. Yoshitsune, and T. Kajiuchi, Biochemistry 34, 493 (1999).Google Scholar
  66. 66.
    A. Domard and N. Cartier, Int. J. Biol. Macromol. 11, 297 (1989).Google Scholar
  67. 67.
    S. Rogazhin, A. Gamzazade, M. Ghlenov, and Y. Leonova, Polym. Sci. USSR 30, 607 (1989).Google Scholar
  68. 68.
    N. Dai, B. Ngoa, and L. Sang-Hoon, J. Funct. Foods 1, 188 (2009).Google Scholar
  69. 69.
    J. Gao, X. Xuerong, D. Zhi, et al., Int. J. Pharm. 255, 57 (2003).Google Scholar
  70. 70.
    Bredehosts, US Patent No. 5900408 (1998).Google Scholar
  71. 71.
    C. J. Knill, J. F. Kennedy, J. Mistry, et al., J. Chem. Technol. Biotechnol. 80, 1291 (2005).Google Scholar
  72. 72.
    T. Sun, D. Zhou, J. Xie, and F. Mao, Eur. Food Res. Technol. 225, 451 (2007).Google Scholar
  73. 73.
    M. Terbojevich, A. Cosanni, and R. Muzzarelli, Carbohydr. Polym. 18, 35 (1992).Google Scholar
  74. 74.
    F. Yaku, E. Muraki, K. Tsuchiya, et al., Cellul. Chem. Technol. 11, 421 (1977).Google Scholar
  75. 75.
    E. Furusaki, Y. Ueno, N. Sakairi, et al., Carbohydr. Polym. 29, 29 (1996).Google Scholar
  76. 76.
    K. Tommeraas, V. Kjell, C. Bjorn, and O. Smidsrod, Carbohydr. Res. 333, 137 (2001).Google Scholar
  77. 77.
    H. Omura, K. Uehara, and Y. Tanaka, JP Appl. No. 03-02203 (1991).Google Scholar
  78. 78.
    M. Tian, F. Chen, D. Ren, et al., Carbohydr. Polym. 79, 137 (2010).Google Scholar
  79. 79.
    V. Keelara, P. Harish, M. Shylaja, et al., Carbohydr. Res. 342, 190 (2007).Google Scholar
  80. 80.
    R. N. Tharanathan and K. V. Harish Prashanth, Indian Patent No. 231588 (2001).Google Scholar
  81. 81.
    K. V. Harish Prashanth and R. N. Tharanathan, Carbohydr. Res. 341, 169 (2006).Google Scholar
  82. 82.
    S. Gao, J. Xuerong, and X. Zhi, Int. J. Pharm. 255, 57 (2006).Google Scholar
  83. 83.
    Y. Xie, J. Hu, Y. Wei, and X. Hong, Polym. Degrad. Stab. 94, 1895 (2009).Google Scholar
  84. 84.
    M. Y. Lee, T. Kajiuchi, and J. W. Yang, in Proceedings of Society of Chemical Engineers of Japan 30 Annual Conference, Hukuoka, Japan, 1997, p. O202.Google Scholar
  85. 85.
    Y. Takahashi, F. Miki, and K. Nagase, Bull. Chem. Soc. Jpn. 68, 1851 (1995).Google Scholar
  86. 86.
    F. S. Kittur, B. A. Vishu Kumar, M. C. Varadaraj, and R. N. Tharanathan, Carbohydr. Res. 340, 1239 (2005).Google Scholar
  87. 87.
    S. Tsukada and Y. Inoue, Carbohydr. Res. 88, 19 (1981).Google Scholar
  88. 88.
    V. A. Maksimov and V. I. Mosin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2579 (1969).Google Scholar
  89. 89.
    M. Izume and A. Ohtakara, Agric. Biol. Chem. 51, 1189 (1987).Google Scholar
  90. 90.
    M. Beaudoin, J. Gauthier, I. Boucher, and K. C. Waldron, J. Sep. Sci. 28, 1390 (2005).Google Scholar
  91. 91.
    L. Blanes, R. M. Saito, F. A. Genta, et al., Anal. Biochem. 373, 99 (2008).Google Scholar
  92. 92.
    Z. E. Rassi, Electrophoresis 20, 3134 (1999).Google Scholar
  93. 93.
    T. Hattori, N. Anraku, and R. Kato, J. Chromatogr. B 878, 477 (2010).Google Scholar
  94. 94.
    L. Bazinet, A. Furtos, V. Karine, and B. Serge, J. Chromatogr. A, 1194 (2008).Google Scholar
  95. 95.
    Chitin Handbook, Ed. by R. A. Muzzarelli and M. G. Peter (European Chitin Society, Atec, 1997).Google Scholar
  96. 96.
    M. Aider, S. Brunet, and L. Bazinet, J. Membr. Sci. 309, 222 (2008).Google Scholar
  97. 97.
    M. Aider, S. Brunet, and L. Bazinet, Sep. Sci. Technol. 69, 63 (2009).Google Scholar
  98. 98.
    S. Kim and N. Rajapakse, Carbohydr. Polym. 62, 357 (2005).Google Scholar
  99. 99.
    R. S. Patil, V. Ghormade, and M. V. Deshpande, Enzym. Microb. Technol. 36, 473 (2000).Google Scholar
  100. 100.
    Y. Takiguchi and K. Shimahara, Agric. Biol. Chem. 53, 1537 (1989).Google Scholar
  101. 101.
    T. Takayanagi, K. Ajisaka, Y. Takiguchi, and K. Shimahara, Biochim. Biophys. Acta 1078, 404 (1991).Google Scholar
  102. 102.
    M. Mitsutomi, H. Kidoh, H. Tomita, and T. Watanabe, Biosci. Biotechnol. Biochem. 59, 529 (1995).Google Scholar
  103. 103.
    A. Ohtakara, H. Matsunaga, and M. Mitsutomi, Agric. Biol. Chem. 54, 3191 (1991).Google Scholar
  104. 104.
    K. Kurita, K. Tomita, S. Ishii, J. Polym. Sci., Part A: Polym. Chem. 31, 2393 (1993).Google Scholar
  105. 105.
    D. Somashekar and R. Joseph, Bioresour. Technol. 55, 35 (1996).Google Scholar
  106. 106.
    K. Sakai, R. Katsumi, A. Isobe, and F. Nanjo, Biochem. Biophys. Acta 1097, 65 (1991).Google Scholar
  107. 107.
    D. M. Fenton and D. E. Eveleigh, J. Gen. Microbiol. 126, 151 (1981).Google Scholar
  108. 108.
    T. Fukamizo, T. Ohkawa, Y. Ikeda, and S. Goto, Biochem. Biophys. Acta 1205, 183 (1994).Google Scholar
  109. 109.
    Advances in Chitin and Chitosan, Ed. by M. Mitsutomi and A. Ohtakara, (Elsevier, London, 1992).Google Scholar
  110. 110.
    R. J. Nordtveit, K. M. Varum, and O. Smidsrod, Carbohyd. Polym. 29, 163 (1996).Google Scholar
  111. 111.
    T. Fukamizo, T. Torikata, S. Kuhara, and K. Hayashi, J. Biochem. 92, 709 (1982).Google Scholar
  112. 112.
    S. Aiba, Int. J. Biol. Macromol. 14, 225 (1992).Google Scholar
  113. 113.
    S. Aiba, Int. J. Biol. Macromol. 15, 241 (1993).Google Scholar
  114. 114.
    K. Kurita, Y. Kaji, T. Mori, and Y. Nishiyamaet, Carbohydr. Polym. 42, 19 (2000).Google Scholar
  115. 115.
    D. Pantaleone, M. Yalpani, and M. Scollar, Carbohydr. Res. 237, 325 (1992).Google Scholar
  116. 116.
    Susceptibility of Chitosan to Enzymic Hydrolysis, Ed. by C. J. Brine, P. A. Sandford, and J. P. Zikakis (Elsevier, Amsterdam, 1992).Google Scholar
  117. 117.
    T. Kuroiwa, S. Ichikawa, O. Hiruta, et al., Biotechnol. Prog. 18, 969 (2002).Google Scholar
  118. 118.
    T. Kuroiwa, S. Ichikawa, S. Sato, and S. Mukataka, Biotechnol. Bioeng. 84, 121 (2008).Google Scholar
  119. 119.
    Y. Jeon, P. Park, H. G. Byun, B.K., et al., Korean J. Biotechnol. Bioeng. 13, 147 (1998).Google Scholar
  120. 120.
    T. Kuroiwa, S. Ichikawa, S. Sato, et al., Biotechnol. Bioeng. 84, 121 (2003).Google Scholar
  121. 121.
    Y. J. Jeon and S. K. Kim, Carbohydr. Polym. 41, 133 (2000).Google Scholar
  122. 122.
    Y. Jin and K. Se-Kwon, Process Biochem. 35, 623 (2000).Google Scholar
  123. 123.
    F. Lin, J. Arul, S. Brunet, and L. Bazinet, J. Agric. Food Chem. 54, 6760 (2006).Google Scholar
  124. 124.
    F. Lin, J. Arul, S. Brunet, and L. Bazinet, J. Membr. Sci. 290, 29 (2007).Google Scholar
  125. 125.
    F. Lin, J. Arul, S. Brunet, and L. Bazinet, J. Biotechnol. 134, 305 (2008).Google Scholar
  126. 126.
    F. Lin, J. Arul, S. Brunet, and L. Bazinet, J. Agric. Food Chem. 56, 1001 (2008).Google Scholar
  127. 127.
    K. M. Varum, H. K. Holme, M. Izume, et al., Biochim. Biophys. Acta 1291, 5 (1996).Google Scholar
  128. 128.
    T. Kuroiwa, H. Izuta, H. Nabetani, et al., Process Biochem. 44, 283 (2009).Google Scholar
  129. 129.
    H. Yi-Chien, L. Yu-Wei, S. Chia-Kai, and B. Chiang, Process Biochem. 43, 76 (2008).Google Scholar
  130. 130.
    J. K. Yeon, J. K. Eun, and Z. Piao, Appl. Environ. Microbiol. 70, 4522 (2004).Google Scholar
  131. 131.
    J. H. Yoon, Enzyme Microb. Technol. 37, 663 (2005).Google Scholar
  132. 132.
    A. Sorbotten, J. Svein, G. H. Vincent, and M. V. Kjell, FEBS J. 272, 538 (2005).Google Scholar
  133. 133.
    L. Ramirez-Coutino, M. Carmen, H. Sergio, and A. Ladislao, Process Biochem. 41, 1106 (2006).Google Scholar
  134. 134.
    K. Tokuyasu, H. Ono, M. Ohnishi, et al., Carbohydr. Res. 303, 353 (1997).Google Scholar
  135. 135.
    A. B. Vishu Kumar, M. Varadaraj, R. G. Lalitha, and R. G. Tharanathan, Biochim. Biophys. Acta 1670, 137 (2004).Google Scholar
  136. 136.
    H. Lin, H. Wang, C. Xue, and M. Ye, Enzyme Microb. Technol. 31, 588 (2002).Google Scholar
  137. 137.
    R. A. Muzzarelli, W. Xia, M. Tomasetti, and P. Ilari, Enzyme Microb. Technol. 17, 541 (1995).Google Scholar
  138. 138.
    D. Lee and W. Xia, Food Chem. 111, 277 (2008).Google Scholar
  139. 139.
    H. Zhang, Y. Du, X. Yu, et al., Carbohydr. Res. 320, 257 (1999).Google Scholar
  140. 140.
    J. C. Cabrera and P. V. Cutsem, Biochem. Eng. J. 25, 165 (2005).Google Scholar
  141. 141.
    J. Li, Y. M. Du, and J. H. Yang, Polym. Degrad. Stab. 87, 441 (2005).Google Scholar
  142. 142.
    A. B. Vishu Kumar, C. Mandyam, G. Lalitha, and N. Rudrapatnamm, Biochem. J. 391, 167 (2005).Google Scholar
  143. 143.
    C. Qin, Y. Du, L. Zong, and B. Zhou, Polym. Degrad. Stab. 80, 435 (2003).Google Scholar
  144. 144.
    H. Zhang and S. H. Neau, Biomaterials 22, 1653 (2001).Google Scholar
  145. 145.
    T. Roncal, A. Oviedo, I. Lopez de Fernandez, et al., Carbohydr. Res. 342, 2750 (2007).Google Scholar
  146. 146.
    G. James and G. J. Tsai, Fish. Sci. 70, 1113 (2004).Google Scholar
  147. 147.
    E. Muraki, F. Yaku, and H. Kojima, Carbohydr. Res. 239, 227 (1993).Google Scholar
  148. 148.
    S. Lopatin, M. Ilyin, V. Pustobaev, et al., Anal. Biochem. 227, 285 (1995).Google Scholar
  149. 149.
    M. Wisniewska, A. Niekraszewicz, and D. Ciechaska, Pol. Chitin Soc., Monograph XII, 149 (2007).Google Scholar
  150. 150.
    S. Lin, Y. Lin, and H. Chen, Food Chem. 116, 47 (2009).Google Scholar
  151. 151.
    R. Yoksan, M. Akashi, M. Miyata, and S. Chirachanchai, Radiat. Res. 161, 471 (2004).Google Scholar
  152. 152.
    P. Ulanski and R. Rosiak, Phys. Chem. 39, 53 (1992).Google Scholar
  153. 153.
    L. Hai, T. Diep, N. Nagasawa, et al., Nucl. Instr. Methods Phys. Res. 208, 466 (2003).Google Scholar
  154. 154.
    W. Zhao, X. Zhong, L. Yu, et al., Polym. Degrad. Stab. 41, 83 (1993).Google Scholar
  155. 155.
    P. Ulanski and C. Sonntag, J. Chem. Soc., Perkin Trans. 2, 2022 (2000).Google Scholar
  156. 156.
    T. Wu, S. Zivanovic, D. Hayes, and J. Weiss, J. Agric. Food Chem. 56, 5112 (2008).Google Scholar
  157. 157.
    S. Baxter, S. Zivanovic, and J. Weiss, Food Hydrocolloids 19, 821 (2005).Google Scholar
  158. 158.
    R. Chen, J. Chang, and J. Shyur, Carbohydr. Res. 299, 287 (1997).Google Scholar
  159. 159.
    S. Popa-Nita, J. Lucas, C. Ladaviere, et al., Biomicromolecules 10, 1203 (2009).Google Scholar
  160. 160.
    M. Kasaai, J. Arul, and G. Charlet, Ultrason. Sonochem. 15, 1001 (2008).Google Scholar
  161. 161.
    H. Liu, Y. Du, and J. Kennedy, Carbohydr. Polym. 68, 598 (2007).Google Scholar
  162. 162.
    R. Chen and J. Chen, Adv. Chitin Sci. 4, 361 (2000).Google Scholar
  163. 163.
    H. Kuyama, Y. Nakahara, T. Nukada, et al., Carbohydr. Res. 243, Cl (1993).Google Scholar
  164. 164.
    T. Usui, H. Matsui, and K. Isobe, Carbohydr. Res. 203, 65 (1990).Google Scholar
  165. 165.
    K. Akiyama, K. Kawazu, and A. Kobayashi, Carbohydr. Res. 279, 151 (1995).Google Scholar
  166. 166.
    E. Samain, S. Drouillard, A. Heyraud, et al., Carbohydr. Res. 302, 35 (1997).Google Scholar
  167. 167.
    J. Cabrera and P. Cutsem, Biochem. Eng. J. 25, 172 (2005).Google Scholar
  168. 168.
    M. Chen, X. Zhu, Z. Li, et al., Int. J. Mass Spectrom. 290, 94 (2010).Google Scholar
  169. 169.
    L. Dong-Xia, X. Wen-Shui, and Z. Jia-Li, Food Chem. 111, 291 (2008).Google Scholar
  170. 170.
    E. Margrethe, O. Kersti, and L. Ragnar, Carbohydr. Res. 273, 77 (1995).Google Scholar
  171. 171.
    D. A. Alain, Int. J. Biol. Macromol. 14, 100 (1992).Google Scholar
  172. 172.
    A. Sei-ichi, Carbohydr. Res. 261, 297 (1994).Google Scholar
  173. 173.
    F. MacLaughlin, R. Mumper, J. Wang, et al., J. Controlled Release 56, 259 (1998).Google Scholar
  174. 174.
    E. Belamie, A. Domard, H. Chanzy, and M. Giraud-Guille, Langmuir 15, 1549 (1999).Google Scholar
  175. 175.
    C. Q. Qin, Y. M. Du, L. Xiao, et al., Int. J. Biol. Macromol. 31, 111 (2002).Google Scholar
  176. 176.
    Q. Caiqin, W. Wei, P. Huie, et al., Carbohydr. Polym. 72, 701 (2008).Google Scholar
  177. 177.
    X. Chuannan, W. Haige, W. Peng, P. Ma, et al., Carbohydr. Res. 344, 1975 (2009).Google Scholar
  178. 178.
    W. Xinlin, W. Yuanfeng, X. Jianbo, and X. Wenshui, Int. J. Biol. Macromol. 45, 432 (2009).Google Scholar
  179. 179.
    L. Yu-Wei, H. Yi-Chien, and C. Been-Huang, Food Res. Int. 42, 1355 (2009).Google Scholar
  180. 180.
    G. A. F. Roberts and J. G. Domszy, Int. J. Biol. Macromol. 4, 374 (1982)Google Scholar
  181. 181.
    R. Chen and H. Hwa, Carbohydr. Polym. 29, 353 (1996).Google Scholar
  182. 182.
    J. Shao and Y. Yang, Chin. J. Pharm. 30, 481 (1999).Google Scholar
  183. 183.
    J. Li, Y. Du, and H. Liang, Polym. Degrad. Stab. 92, 515 (2008).Google Scholar
  184. 184.
    C. Bosso and A. Domard, Org. Mass Spectrom. 27, 799 (1992).Google Scholar
  185. 185.
    M. Letzel, B. Synstad, V. Eijsink, et al., Adv. Chitin Sci. 4, 545 (2000).Google Scholar
  186. 186.
    S. Trombotto, C. Ladaviere, F. Delolme, and A. Domard, Biomacromolecules 9, 1731 (2008).Google Scholar
  187. 187.
    G. Okafo, J. Langridge, S. North, et al., Anal. Chem. 69, 4985 (1997).Google Scholar
  188. 188.
    S. Bahrke, J. Einarsson, J. Gislason, et al., Biomacromolecules 3, 696 (2002).Google Scholar
  189. 189.
    S. Haebel, S. Bahrke, and M. Peter, Anal. Chem. 79, 5557 (2007).Google Scholar
  190. 190.
    K. Harish Prashanth, F. Kittur, and R. Tharanathan, Carbohydr. Polym. 50, 27 (2002).Google Scholar
  191. 191.
    J. Brugnerotto, J. Lizardi, F. Goycoolea, et al., Polymers 42, 2580 (2001).Google Scholar
  192. 192.
    B. Focher, A. Naggi, G. Torri, et al., Carbohydr. Polym. 18, 43 (1992).Google Scholar
  193. 193.
    H. Saito, R. Tabeta, and K. Ogawa, Macromolecules 20, 2424 (1987).Google Scholar
  194. 194.
    E. Belamie, A. Domard, and M. Giraud-Guille, J. Polym. Sci., Part A: Polym. Chem. 35, 3181 (1997).Google Scholar
  195. 195.
    K. Ogawa, Agric. Biol. Chem. 55, 2375 (1991).Google Scholar
  196. 196.
    K. Kurita, T. Sannan, and Y. Iwakura, Makromol. Chem. 178, 3197 (1977).Google Scholar
  197. 197.
    Handbook of Chitin and Chitosan, Ed. by M. Yabuki (Gihodo Syuppan, 1995).Google Scholar
  198. 198.
    N. Kubota, N. Tatsumoto, T. Sano, and K. Toya, Carbohydr Res. 324, 268 (2002).Google Scholar
  199. 199.
    L. T. Zeng, C. Q. Qin, W. T. Chi, et al., Carbohydr. Polym. 67, 551 (2007).Google Scholar
  200. 200.
    A. R. Muzzarelli, M. Terbojevich, C. Muzzarelli, and O. Francescangeli, Carbohydr. Polym. 50, 69 (2002).Google Scholar
  201. 201.
    G. L. Clark and A. F. Smith, J. Phys. Chem. 40, 863 (1936).Google Scholar
  202. 202.
    K. Ogawa, S. Hirano, T. Yui, and T. Watanabe, Macromolecules 17, 973 (1984).Google Scholar
  203. 203.
    K. Ogawa and S. Inukai, Carbohydr. Res. 160, 425 (1987).Google Scholar
  204. 204.
    A. Yamamoto, J. Kawada, T. Yui, and K. Ogawa, Biosci. Biotechnol. Biochem. 61, 1230 (1997).Google Scholar
  205. 205.
    R. Samuels, J. Polym. Sci., Part B: Polym. Phys. 19, 1081 (1981).Google Scholar
  206. 206.
    N. Cartier, A. Domard, and H. Chanzy, Int. J. Biol. Macromol. 12, 289 (1990).Google Scholar
  207. 207.
    Advances in Chitin and Chitosan, Ed. by C. J. Brine, P. A. Sandford, and J. P. Zikakis (Elsevier Applied Science, New York, 1992).Google Scholar
  208. 208.
    Y. Dong, W. Qiu, Y. Ruan, et al., Polym. J. (Tokyo) 33, 387 (2001).Google Scholar
  209. 209.
    Y. Dong, Y. Wu, J. Wang, and M. Wang, Eur. Polym. J. 37, 1713 (2001).Google Scholar
  210. 210.
    M. Terbojevich, A. Cosani, G. Conio, et al., Carbohydr. Res. 209, 251 (1991).Google Scholar
  211. 211.
    D. Raafat, K. von Bargen, A. Haas, and H. G. Sahl, Appl. Environ. Microbiol. 74, 3764 (2008).Google Scholar
  212. 212.
    Y. C. Chung, S. U. Yapingn, C. C. Chen, et al., Acta Pharmacol. Sin. 25, 932 (2004).Google Scholar
  213. 213.
    I. M. Helander, E. L. Nurmiaho-Lassila, R. Ahvenainen, et al., Int. J. Food Microbiol. 71, 235 (2001).Google Scholar
  214. 214.
    Y. C. Chung, H. L. Wang, Y. M. Chen, and S. L. Li, Bioresour. Technol. 88, 179 (2003).Google Scholar
  215. 215.
    R. Muzzarelli, R. Tarsi, O. Filippini, et al., Antimicrob. Agents Chemother. 34, 2019 (1990).Google Scholar
  216. 216.
    L. V. Didenko, D. V. Gerasimenko, N. D. Konstantinova, et al., Bull. Exp. Biol. Med. 140, 356, DOI: 10.1007/s10517-005-0489-6.Google Scholar
  217. 217.
    B. K. Choi, K. Y. Kim, Y. J. Yoo, et al., Int. J. Antimicrob. Agents 18, 553 (2001).Google Scholar
  218. 218.
    G. J. Tsai and W. H. Su, J. Food Proteins 62, 239 (1999).Google Scholar
  219. 219.
    Y. C. Chung and C. Y. Chen, Bioresour. Technol. 99, 2806 (2008).Google Scholar
  220. 220.
    Advances in Chitin Science, Ed. by R. H. Chen and H. C. Chen (Rita Advertising Co., Taiwan, 1998).Google Scholar
  221. 221.
    H. Liu, Y. M. Du, X. H. Wang, and P. Sun, Int. J. Food Microbiol. 95, 147 (2004).Google Scholar
  222. 222.
    X. F. Liu, Y. L. Guan, D. Z. Yang, et al., J. Appl. Polym. Sci. 79, 1324 (2001).Google Scholar
  223. 223.
    Chitin in Nature and Technology, Ed. by R. Muzzarelli, C. Jeuniaux, and G. W. Gooday (Plenum, New York, 1986).Google Scholar
  224. 224.
    E. I. Rabea, C. V. Badawy, G. S. Stevens, and W. Steurbaut, Biomacromolecules 4, 1457 (2003).Google Scholar
  225. 225.
    R. G. Cuero, G. Osuji, and A. Washington, Biotechnol. Lett. 13, 441 (1991).Google Scholar
  226. 226.
    N. R. Sudarshan, D. G. Hoover, and D. Knorr, Food Biotechnol. 6, 257 (1992).Google Scholar
  227. 227.
    S. Tokura, K. Ueno, S. Miyazaki, and N. Nishi, Macromol. Symp. 120, 1 (1997).Google Scholar
  228. 228.
    D. F. Kendra and L. A. Hadwiger, Exp. Mycol. 8, 276 (1984).Google Scholar
  229. 229.
    K. Uneo, T. Yamagachi, N. Sakairi, et al., Adv. Chitin Sci. 2, 156 (1997).Google Scholar
  230. 230.
    R. Scherrer and V. Gerhardt, J. Bacteriol. 107, 718 (1971).Google Scholar
  231. 231.
    G. M. Decad and H. Nikaido, J. Bacteriol. 128, 325 (1976).Google Scholar
  232. 232.
    Chitin Enzymology, Ed by R. A. A. Muzzarelli (Atec, Grottammare, 1996).Google Scholar
  233. 233.
    Progress on Chemistry and Application of Chitin and Its Derivatives, Ed. by H. Struszchyk (Polish Chitin Society, Lodz, 1998).Google Scholar
  234. 234.
    P. Vander, K. M. Varum, A. Domard, et al., Plant Physiol. 118, 1353 (1998).Google Scholar
  235. 235.
    J. S. Moon, H. K. Kim, H. C. Koo, et al., Appl. Microbiol. Biotechnol. 75, 989 (2007).Google Scholar
  236. 236.
    A. Murat, K. Fatih, Z. Mustaf, et al., Carbohydr. Res. DOI: 10.1016/j.carres.2009.12.017 (2010).Google Scholar
  237. 237.
    S. Gama, F. Fazely, J. A. Koch, et al., Biochem. Biophys. Res. Commun. 174, 489 (1991).Google Scholar
  238. 238.
    H. Ronghua, M. Eresha, R. Niranjan, and K. Se-Kwon, Life Sci. 78, 2399 (2006).Google Scholar
  239. 239.
    Y. J. Jeon and S. K. Kim, J. Microb. Biotechnol. 12, 503 (2002).Google Scholar
  240. 240.
    S. Ko, M. Takeshi, O. Yoshio, et al., Carbohydr. Res. 151, 403 (1986).Google Scholar
  241. 241.
    K. Tsukada, T. Matsumoto, K. Aizawa, et al., Jpn. J. Cancer Res. 81, 259 (1990).Google Scholar
  242. 242.
    C. Porporatto, I. D. Bianco, C. M. Riera, and S. G. Correa, Biochem. Biophys. Res. Commun. 304, 266 (2003).Google Scholar
  243. 243.
    X. Qingsong, D. Jiangli, W. Peng, et al., Carbohydr. Polym. 71, 509 (2008).Google Scholar
  244. 244.
    H. Masumi, Y. Keiko, I. Seigo, and H. Midori, Jpn. J. Cancer Res. 92, 459 (2001).Google Scholar
  245. 245.
    Y. Usami, Y. Okamoto, T. Takayama, et al., Carbohydr. Polym. 36, 137 (1998).Google Scholar
  246. 246.
    Y. Okamoto, A. Inoue, K. Miyatake, et al., Macromol. Biosci. 3, 587 (2003).Google Scholar
  247. 247.
    T. Mori, M. Okumura, M. Matsuura, et al., Biomaterials 18, 947 (1997).Google Scholar
  248. 248.
    T. Semenuk, P. Krist, J. Pavlćek, et al., Glycoconjug. J. 18, 817 (2001).Google Scholar
  249. 249.
    N. Ohara, Y. Hayashi, S. Yamada, et al., Biomaterials 25, 1749 (2004).Google Scholar
  250. 250.
    S. Minami, H. Suzuki, Y. Okamoto, et al., Carbohydr. Polym. 36, 151 (1998).Google Scholar
  251. 251.
    Y. Suzuki, Y. Okamoto, M. Morimoto, et al., Carbohydr. Polym. 42, 307 (2000).Google Scholar
  252. 252.
    Y. Suzuki, K. Miyatake, Y. Okamoto, et al., Carbohydr. Polym. 54, 465 (2003).Google Scholar
  253. 253.
    A. Tokoro, N. Tatawaki, K. Suzuki, et al., Chem. Pharm. Bull. 36, 784 (1988).Google Scholar
  254. 254.
    Chitin in Nature and Technology, Ed. by R. A. A. Muzazarelli, C. Jeuniaux, and G. W. Gooday (Plenum, New York, 1986).Google Scholar
  255. 255.
    H. L. Jiang, I. K. Park, M. L. Kang, et al., Polym. Adv. Technol. 18, 220 (2007).Google Scholar
  256. 256.
    E. V. Svirshchevskaya, L. G. Alekseeva, P. D. Reshetov, et al., Eur. J. Med. Chem. 44, 2030 (2009).Google Scholar
  257. 257.
    Y. J. Hyun, E. M. Myoung, S. P. Haeng, et al., Biochem. Biophys. Res. Commun. 358, 954 (2007).Google Scholar
  258. 258.
    K. S. Nam, K. K. Mee, and H. S. Yun, J. Microbiol. Biotechnol. 17, 2042 (2007).Google Scholar
  259. 259.
    J. Y. Hyun, E. M. Myoung, S. P. Haeng, et al., Food Chem. Toxicol. 46, 710 (2008).Google Scholar
  260. 260.
    Q. Ying, R. Yuanyuan, X. Chuannan, et al., Carbohydr. Polym. 82, 405 (2010).Google Scholar
  261. 261.
    K. V. Harish Prashanth and R. N. Tharanathan, Biochim. Biophys. Acta 1722, 22 (2005).Google Scholar
  262. 262.
    W. Zheng, L. Zheng, S. Yang, et al., Biochem. Biophys. Res. Commun. 357, 26 (2007).Google Scholar
  263. 263.
    W. Haige, Y. Ziang, B. Xuefang, et al., Carbohydr. Polym. 73, 105 (2008).Google Scholar
  264. 264.
    W. Haige, Y. Ziang, D. Yuguang, and M. Xiaojun, Carbohydr. Polym. DOI: 10.1016/j.carbpol.2010.06.015 (2010).Google Scholar
  265. 265.
    X. Chuannan, W. Haige, W. Peng, et al., Carbohydr. Res. DOI: 10.1016/j.carres.2009.06.036 (2009)Google Scholar
  266. 266.
    Q. Haizhi, Z. Fei, H. Xinyan, et al., Med. Hypotheses 73, 205 (2009).Google Scholar
  267. 267.
    H. T. Liu, W. M. Li, G. Xu, et al., Pharmacol. Res. 59, 167 (2009).Google Scholar
  268. 268.
    L. Hong-Tao, H. Jun-Lin, L. Wen-Ming, et al., Carbohydr. Polym. 80, 1062 (2010).Google Scholar
  269. 269.
    M. M. Kim and S. K. Kim, FEBS Lett. 580, 2661 (2006).Google Scholar
  270. 270.
    R. A. A. Muzzarelli and L. Sipos, Talanta 28, 53 (1971).Google Scholar
  271. 271.
    E. Mendis, M. M. Kim, N. Rajapakse, and S. K. Kim, Bioorg. Med. Chem. Lett. 16, 3105 (2006).Google Scholar
  272. 272.
    N. Rajapakse, E. Mendis, M. M. Kim, and S. K. Kim, Bioorg. Med. Chem. Lett. 15, 4891 (2007).Google Scholar
  273. 273.
    Q. Ta, M. M. Kim, and S. K. Kim, Mar. Biotechnol. 8, 593 (2006).Google Scholar
  274. 274.
    P. J. Park, J. Y. Je, and S. K. Kim, J. Agric. Food Chem. 51, 4930 (2003).Google Scholar
  275. 275.
    P. Pyo-Jam, A. Chang-Bum, J. You-Jin, and J. Jae-Young, Bioorg. Med. Chem. Lett. 18, 2471 (2008).Google Scholar
  276. 276.
    G. I. Yakovlev, V. A. Mitkevich, N. K. Struminskaya, et al., Biochem. Biophys. Res. Commun. 357, 584 (2007).Google Scholar
  277. 277.
    B. Hee-Guk, K. Yong-Tae, P. Pyo-Jam, et al., Carbohydr. Polym. 61, 198 (2005).Google Scholar
  278. 278.
    Y. Y. Na, N. Dai-Nghiep, and K. Se-Kwon, Carbohydr. Polym. 78, 869 (2009)Google Scholar
  279. 279.
    M. Yazdani-Pedram, A. Lagos, N. Campos, and J. Retuert, Int. J. Polym. Mater. 18, 25 (1992).Google Scholar
  280. 280.
    A. S. Koryagin, E. A. Erofeeva, N. O. Yakimovich, et al., Bull. Exp. Biol. Med. 142, 461 (2006).Google Scholar
  281. 281.
    J. Jae-Young, P. Pyo-Jam, and K. Se-Kwon, Food Chem. Toxicol. 42, 381 (2004).Google Scholar
  282. 282.
    E. Mendis, M. M. Kim, N. Rajapakse, and S. K. Kim, Life Sci. 80, 2118 (2007).Google Scholar
  283. 283.
    J. C. Fernandes, P. Eaton, H. Nascimento, et al., Carbohydr. Polym. 79, 1101 (2010).Google Scholar
  284. 284.
    Y. Wen-Peng, L. Bing, L. Chang-Heng, et al., World J. Gastroenterol. 21, 1339 (2009).Google Scholar
  285. 285.
    H. W. Lee, Y. S. Park, J. W. Choi, et al., Biol. Pharm. Bull. 26, 1100 (2003).Google Scholar
  286. 286.
    Y. Kondo, A. Nakatani, K. Hayashi, and M. Ito, Biol. Pharm. Bull. 23, 1458 (2000).Google Scholar
  287. 287.
    H. Koji and I. Mikio, Biol. Pharm. Bull. 25, 188 (2000).Google Scholar
  288. 288.
    Y. Hsien-Tsung, H. Shan-Ye, and C. Meng-Tsan, Food Chem. Toxicol. 46, 1525 (2008).Google Scholar
  289. 289.
    K. Se-Jae, K. So-Young, P. Seung-Lim, et al., Korean J. Food Sci. Technol. 30, 693 (1998).Google Scholar
  290. 290.
    H. Y. Lee, Y. S. Park, J. S. Jung, and W. S. Shin, Anaerobe 8, 319 (2002).Google Scholar
  291. 291.
    K. S. Nam, M. K. Kim, and Y. H. Shon, J. Microbiol. Biotechnol. 17, 1546 (2007).Google Scholar
  292. 292.
    Y. J. Jeon, F. Shahidi, and S. K. Kim, Food Rev. Int. 16, 159 (2000).Google Scholar
  293. 293.
    P. R. Klokkevold, L. Vandemark, E. B. Kenney, and G. W. Bernard, J. Periodontol. 67, 1170 (1996).Google Scholar
  294. 294.
    J. Ratanavaraporn, S. Kanokpanont, Y. Tabata, and S. Damrongsakkul, Carbohydr. Polym. 78, 873 (2009).Google Scholar
  295. 295.
    H. Sano, K. Shibasaki, T. Matsukubo, and Y. Takaesu, Bull. Tokyo Dent. Coll. 43, 75 (2002).Google Scholar
  296. 296.
    B. B. Aam, E. B. Heggset, A. L. Norberg, et al., Mar. Drugs 8, 1482 (2010).Google Scholar
  297. 297.
    N. N. Inamdar and V. K. Mourya, in Polysaccharide: Development, Properties and Applications, Ed. by A. Tiwari (Nova Science, New York) (in press).Google Scholar
  298. 298.
    D. Z. Yong, W. Ling, D. Ying, et al., Carbohydr. Polym. 79, 1034 (2010)Google Scholar
  299. 299.
    Y. Zhang, M. Huo, J. Zhou, et al., Carbohydr. Polym. 77, 231 (2009).Google Scholar
  300. 300.
    H. W. Xiao, Y. N. Wei, Y. X. Yang, et al., J. Bioact. Compat. Polym. 25, 319 (2010).Google Scholar
  301. 301.
    Z. D. Yong, W. Ling, Y. Hong, et al., Colloids Surf. B: Biointerfaces 69, 257 (2009).Google Scholar
  302. 302.
    D. Liu, J. H. Hsieh, X. C. Fan, et al., Carbohydr. Polym. 68, 544 (2007).Google Scholar
  303. 303.
    C. Wang, G. Li, S. Tao, et al., Carbohydr. Polym. 64, 466 (2006).Google Scholar
  304. 304.
    Y. Z. Yue, Z. D. Yong, W. Ling, et al., Int. J. Pharm. 393, 143 (2010).Google Scholar
  305. 305.
    A. Vila, A. Sanchez, K. A. Janes, et al., Eur. J. Pharm. Biopharm. 57, 123 (2004).Google Scholar
  306. 306.
    F. Q. Hu, M. D. Zhao, H. Yuan, et al., Int. J. Pharm. 315, 158 (2006).Google Scholar
  307. 307.
    Z. D. Yong, Y. Y. Xiao, W. Ling, et al., Int. J. Pharm. 392, 164 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. K. Mourya
    • 1
  • N. N. Inamdar
    • 1
  • Y. M. Choudhari
    • 1
  1. 1.Government Pharmacy CollegeOsmanpura, Aurangabad (MS)India

Personalised recommendations