Advertisement

Polymer Science Series A

, Volume 53, Issue 4, pp 344–353 | Cite as

Adsorption of amphiphilic comb-shaped macromolecules on a patterned surface

  • A. A. Glagoleva
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Simulation

Abstract

The molecular-dynamics method is used to study the adsorption of A-graft-B macromolecules on patterned planar surfaces consisting of regions a and b that specifically interact with chain units. Surfaces with patterns in the form of circles of different radii and a spiral stripe are discussed. Effective recognition occurs during the adsorption of an A-graft-B macromolecule on these patterned surfaces. Recognition means that, for a proper combination of the architecture of a macromolecule and the energy parameters of its interaction with the plane regions, the macromolecule can be located along the boundary of a circle with a given radius or can stay in a given location of the spiral stripe.

Keywords

Macromolecule Polymer Science Series Adsorption Energy Monomer Unit Diblock Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Protein (Knizhnyi dom “Universitet”, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    V. P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces (Plenum, New York, 1991).Google Scholar
  3. 3.
    I. Roitt and P. J. Delves, Essential Immunology (Blackwell, Oxford, 2001).Google Scholar
  4. 4.
    N.-K. Lee and T. A. Vilgis, Phys. Rev. E: Stat, Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 67, 050901 (2003).Google Scholar
  5. 5.
    F. Burmeister, C. Schäfle, T. Matthes, et al., Langmuir 13, 2983 (1997).CrossRefGoogle Scholar
  6. 6.
    N. V. Dziomkina and G. J. Vancso, Soft Matter 1, 265 (2005).CrossRefGoogle Scholar
  7. 7.
    R. Garcia, M. Calleja, and F. Perez-Murano, Appl. Phys. Lett. 72, 2295 (1998).CrossRefGoogle Scholar
  8. 8.
    J. Heier, E. J. Kramer, S. Walheim, and G. Krausch, Macromolecules 30, 6610 (1997).CrossRefGoogle Scholar
  9. 9.
    J. P. Spatz, A. Roescher, S. Sheiko, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 8, 731 (1995).CrossRefGoogle Scholar
  10. 10.
    H. L. Frish, R. Simha, and F. R. Eirich, J. Chem. Phys. 21, 365 (1953).CrossRefGoogle Scholar
  11. 11.
    E. Helfand, Macromolecules 9, 307 (1976).CrossRefGoogle Scholar
  12. 12.
    J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83, 1619 (1979).CrossRefGoogle Scholar
  13. 13.
    P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979; Mir, Moscow, 1982).Google Scholar
  14. 14.
    M. Schmidt and K. Binder, J. Phys. (Paris) 46, 1631 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Bogner, A. Degenhard, and F. Schmid, Phys. Rev. Lett. 93, 268108 (2004).CrossRefGoogle Scholar
  16. 16.
    R. Ros, F. Schwesinger, D. Anselmetti, et al., Proc. Natl. Acad. Sci. U. S. A. 95, 7402 (1998).CrossRefGoogle Scholar
  17. 17.
    A. C. Balazs, M. Gempe, and C. W. Lantman, Macromolecules 24, 168 (1991).CrossRefGoogle Scholar
  18. 18.
    A. Naidenov and S. Nechaev, J. Phys. A 34, 5625 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Yu. Grosberg, S. Izrailev, and S. Nechaev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 50, 1912 (1994).Google Scholar
  20. 20.
    N. A. Denesyuk and I. Y. Erukhimovich, J. Chem. Phys. 113, 3894 (2000).CrossRefGoogle Scholar
  21. 21.
    M. S. Moghaddam and S. G. Whittington, J. Phys. A 35, 33 (2002).CrossRefGoogle Scholar
  22. 22.
    A. V. Berezkin, M. A. Solov’ev, P. G. Khalatur, and A. R. Khokhlov, Polymer Science, Ser. A 47, 622 (2005) [Vysokomol. Soedin., Ser. A 47, 1000 (2005)].Google Scholar
  23. 23.
    Y. K. Jhon, J. J. Semler, J. Genzer, et al., Macromolecules 42, 2843 (2009).CrossRefGoogle Scholar
  24. 24.
    C. Yeung, A. C. Balazs, and D. Jasnow, Macromolecules 25, 1357 (1992).CrossRefGoogle Scholar
  25. 25.
    Y. A. Kriksin, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 122, 114703 (2005).CrossRefGoogle Scholar
  26. 26.
    M. K. Krotova and P. G. Khalatur, in Proceedings of European Polymer Congress, Portro, Slovenia, 2007, p. 45.Google Scholar
  27. 27.
    K. Sumithra and E. Straube, J. Chem. Phys. 125, 154701 (2006).CrossRefGoogle Scholar
  28. 28.
    M. S. Moghaddam and H. S. Chan, J. Chem. Phys. 125, 164909 (2006).CrossRefGoogle Scholar
  29. 29.
    K. Sumithra, M. Brandau, and E. Straube, J. Chem. Phys. 130, 234901 (2009).CrossRefGoogle Scholar
  30. 30.
    A. I. Chervanyov and G. Heinrich, J. Chem. Phys. 125, 084703 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Yu. Kriksin, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 174906 (2006).CrossRefGoogle Scholar
  32. 32.
    H. C. Andersen, J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
  33. 33.
    A. R. Khokhlov, Polymer 19, 1387 (1978).CrossRefGoogle Scholar
  34. 34.
    W. A. Steele, Surf. Sci. 36, 317 (1973).CrossRefGoogle Scholar
  35. 35.
    I. I. Potemkin, A. R. Khokhlov, S. Prokhorova, et al., Macromolecules 37, 3918 (2004).CrossRefGoogle Scholar
  36. 36.
    P. G. Khalatur, A. R. Khokhlov, S. A. Prokhorova, et al., Eur. Phys. J. E 1, 99 (2000).CrossRefGoogle Scholar
  37. 37.
    A. Subbotin, J. Jong, and G. Brinke, Eur. Phys. J. E 20, 99 (2006).CrossRefGoogle Scholar
  38. 38.
    I. I. Potemkin and V. V. Palyulin, Polymer Science, Ser. A 51, 123 (2009) [Vysokomol. Soedin., Ser. A 51, 163 (2009)].CrossRefGoogle Scholar
  39. 39.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  40. 40.
    A. A. Starostina, A. A. Klochkov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 50, 1008 (2008) [Vysokomol. Soedin., Ser. A 50, 1691 (2008)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. A. Glagoleva
    • 1
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations