Polymer Science Series A

, Volume 52, Issue 12, pp 1344–1354 | Cite as

Low-frequency rheology of magnetically controlled elastomers with isotropic structure

  • O. V. Stolbov
  • Yu. L. Raikher
  • G. V. Stepanov
  • A. V. Chertovich
  • E. Yu. Kramarenko
  • A. R. Khokhlov
Rheology

Abstract

The method of torsion oscillations is used to measure the dynamic modulus of elasticity of magnetically controlled elastomers that comprise silicone rubber and carbonyl iron in the low-frequency (up to 100 Hz) range. The samples are synthesized in the absence of a magnetic field; therefore, they have an isotropic structure. In the measurements, a constant magnetic field (up to 24 kA/m) is superimposed along the axis of forced torsion oscillations of the sample. A simple model of the rheological behavior of magnetically controlled elastomers is proposed; the problem of torsion oscillations of a cylindrical sample is solved. From the comparison with the experiment for the materials under study, we determine the coefficients of the theoretical model and the corrections to them, which are made because of variations in the rheology of magnetically controlled elastomers under the influence of a magnetic field. The derived relations make it possible to exclude artifacts and to adequately describe dependences of the storage and loss moduli on the frequency of mechanical loading and the strength of the applied magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Jolly, J. D. Carlson, and B. C. Munoz, Smart Mater. Struct. 5, 607 (1996).CrossRefGoogle Scholar
  2. 2.
    M. R. Jolly, J. D. Carlson, and B. C. Munoz, J. Intell. Mater. Syst. Struct. 7, 613 (1996).CrossRefGoogle Scholar
  3. 3.
    W. M. Stewart, J. M. Ginder, L. D. Elie, and M. E. Nichols, US Patent No. 5,816,587 (1998).Google Scholar
  4. 4.
    E. F. Levina, RF Patent No. 2157013 (2000).Google Scholar
  5. 5.
    L. V. Nikitin, L. S. Mironova, A. N. Samus’, and G. V. Stepanov, Polymer Science, Ser. A 43, 443 (2001) [Vysokomol. Soedin., Ser. A 43, 698 (2001)].Google Scholar
  6. 6.
    L. V. Nikitin, L. S. Mironova, K. G. Kornev, and G. V. Stepanov, Polymer Science, Ser. A 46, 301 (2004) [Vysokomol. Soedin., Ser. A 46, 498 (2004)].Google Scholar
  7. 7.
    L. V. Nikitin, G. V. Stepanov, L. S. Mironova, and A. I. Gorbunov, J. Magn. Magn. Mater. 2072–2073, 272 (2004).Google Scholar
  8. 8.
    S. S. Abramchuk, D. S. Grishin, E. Yu. Kramarenko, et al., Polymer Science, Ser. A 48, 138 (2006) [Vysokomol. Soedin., Ser. A 48, 245 (2006)].CrossRefGoogle Scholar
  9. 9.
    G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, et al., Polymer 48, 488 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Abramchuk, E. Kramarenko, G. Stepanov, et al., Polym. Adv. Technol. 18, 883 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Abramchuk, E. Kramarenko, D. Grishin, et al., Polym. Adv. Technol. 18, 513 (2007).CrossRefGoogle Scholar
  12. 12.
    G. V. Stepanov, D. Yu. Borin, Yu. L. Raikher, et al., J. Phys.: Condens. Matter 20, Art. No. 204121-5 (2008).Google Scholar
  13. 13.
    Yu. L. Raikher and O. V. Stolbov, J. Phys.: Condens. Matter 20, Art. No. 204126-5 (2008).Google Scholar
  14. 14.
    A. V. Chertovich, G. V. Stepanov, E. Yu. Kramarenko, and A. R. Khokhlov, Macromol. Mater. Eng. 295, 336 (2010).CrossRefGoogle Scholar
  15. 15.
    G. Filipcsei, I. Csetneki, A. Szilgyi, and M. Zrinyi, Adv. Polym. Sci. 206, 137 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. Shen and M. F. Golnaraghi, J. Intell. Mater. Syst. Struct. 15, 27 (2004).CrossRefGoogle Scholar
  17. 17.
    C. Bellan and G. Bossis, Int. J. Mod. Phys. B 16, 2447 (2002).CrossRefGoogle Scholar
  18. 18.
    G. Bossis, C. Abbo, S. Cutillas, et al., Int. J. Mod. Phys. B 15, 564 (2001).CrossRefGoogle Scholar
  19. 19.
    G. Y. Zhou and Z. Jiang, Smart Mater. Struct. 13, 309 (2004).CrossRefGoogle Scholar
  20. 20.
    M. Zrinyi, J. Gacs, and C. Simon, WO Patent No. 9702580 (2006).Google Scholar
  21. 21.
    J. D. Carlson and M. R. Jolly, Mechatronics 10, 555 (2000).CrossRefGoogle Scholar
  22. 22.
    J. Li, X. Gong, H. Zhu, and W. Jiang, Polym. Test. 28, 331 (2009).CrossRefGoogle Scholar
  23. 23.
    L. Chen, X. Gong, and W. Li, Chin. J. Chem. Phys. 21, 581 (2008).CrossRefGoogle Scholar
  24. 24.
    L. Chen, X. L. Gong, and W. H. Li, Polym. Test. 27, 340 (2008).CrossRefGoogle Scholar
  25. 25.
    T. L. Sun, X. L. Gong, W. Q. Jiang, et al., Polym. Test. 27, 520 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Kallio, T. Lindroos, S. Aalto, et al., Smart Mater. Struct. 16, 506 (2007).CrossRefGoogle Scholar
  27. 27.
    X. L. Gong, X. Z. Zhang, and P. Q. Zhang, Polym. Test. 24, 669 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, Y. Hu, L. Chen, et al., Polym. Test. 25, 262 (2006).CrossRefGoogle Scholar
  29. 29.
    DE Patent No. DD 297 178 (1992).Google Scholar
  30. 30.
    G. V. Stepanov, E. I. Alekseeva, A. I. Gorbunov, and L. V. Nikitin, Organosilicon Chemistry VI-From Molecules to Materials, Ed. by N. Auner and J. Weis (Wiley-VCH, Weinheim, 2005), Vol. 2, p. 779.Google Scholar
  31. 31.
    A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, and Applications (Professiya, St. Petersburg, 2007) [in Russian].Google Scholar
  32. 32.
    M. Reiner, in Rheology. Theory and Applications, Ed. by F. R. Eirich (Academic, New York, 1956; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  33. 33.
    S. V. Kankanala and N. Triantafyllidis, J. Mech. Phys. Solids 52, 2869 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. V. Stolbov
    • 1
  • Yu. L. Raikher
    • 1
  • G. V. Stepanov
    • 2
  • A. V. Chertovich
    • 3
  • E. Yu. Kramarenko
    • 3
  • A. R. Khokhlov
    • 3
  1. 1.Institute of Continuous Media Mechanics, Ural DivisionRussian Academy of SciencesPermRussia
  2. 2.State Research Institute of Chemistry and Technology of Organoelement CompoundsMoscowRussia
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations